

AVIGNON UNIVERSITÉ

# ANOVEX: ANalysis Of Variability for heavy-tailed EXtremes

Antoine Usseglio-Carleve<sup>1</sup>

<sup>1</sup>Avignon Université, Laboratoire de Mathématiques d'Avignon – LMA UPR 2151 antoine.usseglio-carleve@univ-avignon.fr

Joint work with Stéphane Girard and Thomas Opitz

## **Motivation**

In practice, it is frequent to ask whether two or more groups of individuals come from the same population (for data pooling issues or the study of the impact of a categorical variable for instance).



#### A widespread tool is the classical ANOVA.



#### 2 Test statistic and asymptotic distribution

#### 8 Examples of type-I and type-II error approximations

#### 4 Real data example

## From ANOVA...

Let us consider J > 1 samples  $E_j = \{X_i^{(j)}, i = 1, ..., n_j\}, j = 1, ..., J$ , with independence between samples and possibly different sample sizes  $n_j > 1$  (such that  $n_j = O(n)$ , for all j). We assume that the random variables in each  $E_j$  are identically distributed according to a cumulative distribution function  $F_j$ , with mean  $\mu_j = \int_{\mathbb{R}} (1 - F_j(t)) dt$ .

The classical ANalysis Of VAriance (ANOVA) aims at testing the equality of the means  $\mu_1, \ldots, \mu_J$ , based on the decomposition:



## From ANOVA...

#### Normal distributions



Figure 1: ANalysis Of VAriance (ANOVA) for two normal distributions.

a

## ... to ANOVEX

Instead of testing the equality of the means (i.e. the body) of the samples, we propose to test the equality of the tails:

(H<sub>0</sub>) For all 
$$(j, j') \in \{1, \dots, J\}^2$$
 with  $j \neq j'$ , we have  $q_{j'}(\alpha)/q_j(\alpha) \to 1$   
as  $\alpha \to 1$ .

For that purpose, we consider  $L \in \mathbb{N}^*$  extreme quantile levels  $\alpha_{1,n}, \ldots, \alpha_{L,n}$  (i.e. such that  $n(1 - \alpha_{\ell,n}) = O(1)$  for all  $\ell \in \{1, \ldots, L\}$ ). The key will be the decomposition of the term:

$$\Delta_n = \underbrace{\frac{1}{JL} \sum_{j=1}^{J} \sum_{\ell=1}^{L} \left(\log \tilde{q}_j(\alpha_{\ell,n}) - \mu_{\alpha,n}\right)^2}_{\text{total var.}}, \text{ with } \mu_{\alpha,n} = \frac{1}{JL} \sum_{j=1}^{J} \sum_{\ell=1}^{L} \log \tilde{q}_j(\alpha_{\ell,n})$$

and  $\tilde{q}_i(\alpha_{\ell,n})$  is an estimator of  $q_i(\alpha_{\ell,n})$ .

Note that the existence of  $\mu_j$  is not necessary !

## ... to ANOVEX

### **Proposition 1**

The decomposition  $\Delta_n = \Delta_{1,n} + \Delta_{2,n}$  holds where

$$\Delta_{1,n} = \underbrace{\frac{1}{JL} \sum_{\ell=1}^{L} \sum_{j=1}^{J} \left( \log \tilde{q}_j(\alpha_{\ell,n}) - \frac{1}{J} \sum_{j=1}^{J} \log \tilde{q}_j(\alpha_{\ell,n}) \right)^2}_{\text{var. due to the different samples}} \Delta_{2,n} = \underbrace{\frac{1}{L} \sum_{\ell=1}^{L} \left( \frac{1}{J} \sum_{j=1}^{J} \log \tilde{q}_j(\alpha_{\ell,n}) - \mu_{\alpha,n} \right)^2}_{\text{var. due to the different quantile levels}}.$$



Normal and Student distributions



Figure 2: Decomposition of extreme log-quantile variance for a standard normal (black curve) and a Student's *t* distribution 3 degrees of freedom (red curve), for two extreme quantiles at probability levels {0.98, 0.99}.

Unfortunately, estimating an extreme quantile is not an obvious task, and some conditions are required.

•  $C_2(\xi, \rho, A)$ : A cumulative distribution function F belongs to the class  $C_2(\xi, \rho, A)$  with tail index  $\xi > 0$  and second-order parameter  $\rho < 0$ , if there exists a measurable auxiliary function A with constant sign, satisfying  $A(t) \to 0$  as  $t \to \infty$ , such that

$$\lim_{t\to\infty}\frac{1}{A(1/\overline{F}(t))}\left(\frac{\overline{F}(ty)}{\overline{F}(t)}-y^{-1/\xi}\right)=y^{-1/\xi}\frac{y^{\rho/\xi}-1}{\xi\rho},\quad\text{for all }y>0.$$

#### 1 From ANOVA to ANOVEX

#### 2 Test statistic and asymptotic distribution

#### 8 Examples of type-I and type-II error approximations

#### 4 Real data example

In order to estimate the extreme quantiles in  $\Delta_{1,n}$  and  $\Delta_{2,n}$ , we use the approach proposed by Weissman 1978:

- We carefully choose intermediate quantile levels  $\beta_{j,n} \to 1$  such that  $n_j(1 \beta_{j,n}) = n(1 \beta_n)(1 + o(1)) \to \infty$  as  $n \to \infty$ .
- We estimate the tail indices  $\xi_1, \ldots, \xi_J$  using the Hill estimator:

$$\widehat{\xi}_{j}(\beta_{j,n}) = \frac{1}{\lfloor (1-\beta_{j,n})n_{j} \rfloor} \sum_{i=0}^{\lfloor (1-\beta_{j,n})n_{j} \rfloor - 1} \log X_{n_{j}-i,n_{j}}^{(j)} - \log X_{n_{j}-\lfloor (1-\beta_{j,n})n_{j} \rfloor,n_{j}}^{(j)},$$

where  $X_{1,n_j}^{(j)} \leq X_{2,n_j}^{(j)} \leq \ldots \leq X_{n_j,n_j}^{(j)}$  (see Hill 1975).

• We deduce the Weissman extreme quantile estimator

$$\widehat{q}_{j}^{\scriptscriptstyle W}(\alpha_{\ell,n} \,|\, \beta_{j,n}) = \widehat{q}_{j}(\beta_{j,n}) \left(\frac{1-\beta_{j,n}}{1-\alpha_{\ell,n}}\right)^{\widehat{\xi}_{j}(\beta_{j,n})}$$

For convenience, let us consider in the sequel

$$\alpha_{\ell,n} = 1 - \tau_{\ell}/n, \tau_{\ell} > 0$$
 for  $\ell = 1, \dots, L$ .

We thus define the ANOVEX test statistic

$$T_n = \frac{J \operatorname{varlog}(\tau_{1:L}) n(1 - \beta_n)}{S_n(\beta_n, \tau_{1:L})} \frac{\Delta_{1,n}}{\Delta_{2,n}},$$

where

$$\operatorname{varlog}(\tau_{1:L}) = \frac{1}{L} \sum_{\ell=1}^{L} \left( \log\left(\tau_{\ell}\right) \right)^{2} - \left( \frac{1}{L} \sum_{\ell=1}^{L} \log\left(\tau_{\ell}\right) \right)^{2} \text{ and}$$
$$S_{n}(\beta_{n}, \tau_{1:L}) = \frac{1}{L} \sum_{\ell=1}^{L} \left( \log\left(\frac{n(1-\beta_{n})}{\tau_{\ell}}\right) \right)^{2}.$$

## **ANOVEX test statistic**

#### **Theorem 1**

Suppose that  $F_j \in C_2(\xi_j, \rho_j, A_j)$  for  $j = 1, \dots, J$ . Moreover, we assume

$$\sqrt{n(1-\beta_n)}A_j\left((1-\beta_n)^{-1}\right) \to 0, \quad n \to \infty, \quad \text{for all } j=1,\dots,J.$$

Then, under  $(H_0)$ ,

$$T_n \stackrel{d}{\to} \chi^2_{J-1}, \quad n \to \infty.$$

The ANOVEX test rejects  $(H_0)$  with asymptotic level  $\gamma \in (0,1)$  if

$$T_n = \frac{J \operatorname{varlog}(\tau_{1:L}) n(1-\beta_n)}{S_n(\beta_n, \tau_{1:L})} \frac{\Delta_{1,n}}{\Delta_{2,n}} > \chi^2_{J-1,1-\gamma},$$

where  $\chi^2_{J-1,1-\gamma}$  denotes the quantile of level  $1-\gamma$  of the chi-square distribution with J-1 degrees of freedom.



#### 2 Test statistic and asymptotic distribution

#### 3 Examples of type-I and type-II error approximations

#### 4 Real data example

Let us denote for convenience

$$s_n(\beta_n, \tau_{1:L}) = \frac{1}{L} \sum_{\ell=1}^L \sqrt{1 + \left(\log\left(\frac{n(1-\beta_n)}{\tau_\ell}\right)\right)^2},$$
  
and  $\mathfrak{s}_n(\beta_n, \tau_{1:L}) = \frac{1}{L} \sum_{\ell=1}^L \log\left(\frac{n}{\tau_\ell}\right) \sqrt{1 + \left(\log\left(\frac{n(1-\beta_n)}{\tau_\ell}\right)\right)^2}.$ 

We will deal with three situations (all in the case J = 2):

- 1 Two identically distributed Pareto samples,
- 2 Two Pareto samples with different scale parameters,
- **3** Two Pareto samples with different shape parameters.

#### **Proposition 2**

Consider two independent samples  $E_j = \{X_1^{(j)}, \ldots, X_n^{(j)}\}, j = 1, 2, of$ i.i.d. variables following the same Pareto distribution  $\mathcal{P}(1/\xi), \xi > 0$ . Assume that  $(\beta_n)$  is an intermediate probability level such that  $(1 - \beta_n) \log(n) \to 0$  as  $n \to 0$ . Then, as  $n \to \infty$ ,

$$\begin{split} T_n \stackrel{d}{=} \Gamma^2 \left( 1 + \frac{1}{S_n(\beta_n, \tau_{1:L})} \right) \\ & \times \left( 1 + O_{\mathbb{P}} \left( \frac{1}{\sqrt{n(1 - \beta_n)}} \right) + O_{\mathbb{P}} \left( \frac{1 - \beta_n}{\log(n(1 - \beta_n))} \right) \right) \end{split}$$

where  $\Gamma$  is a standard normal random variable.

The probability  $\mathbb{P}_{H_0}(T_n > \chi_{1,1-\gamma}^2)$  to wrongly reject  $(H_0)$  with asymptotic level  $\gamma \in (0,1)$  is for large n approximately equal to

$$p_n(\gamma) = 2\bar{\Phi}\left(\bar{\Phi}^{-1}(\gamma/2)\left(1 + \frac{1}{S_n(\beta_n, \tau_{1:L})}\right)^{-1/2}\right),$$

where  $\overline{\Phi}(\cdot)$  is the standard Gaussian survival function.

## **Identically distributed Pareto samples**



#### **Rejection probability**

Figure 3: Empirical (solid curves) and approximated (dashed curve) type I errors obtained for 10,000 replications with n = 1,000,  $\beta_n = 0.9$  and  $\xi = 0.25$ , as functions of *L*. The underlying distribution is a Pareto (blue), Fréchet (purple), Burr with  $\rho = -0.75$  (green) and GPD (red) distribution.

Ш

Consider two independent samples denoted by  $E_1 = \{X_1^{(1)}, \ldots, X_n^{(1)}\}$  and  $E_2 = \{X_1^{(2)}, \ldots, X_n^{(2)}\}$  where

$$(H_{1,n})$$
  $X_i^{(1)} \sim \mathcal{P}(1/\xi)$  and  $X_i^{(2)} \stackrel{d}{=} \lambda_n X_i^{(1)}$ ,  $i = 1, \dots, n$  and  $\lambda_n \to 1$  as  $n \to \infty$ .

The condition  $\lambda_n \to 1$  (and in a sense  $(H_{1,n}) \to (H_0)$ ) is a concept known in the literature as the contiguity.

## Pareto samples with different scale parameters

#### **Proposition 3**

Assume that

$$\frac{\log(n(1-\beta_n))}{(n(1-\beta_n))^{3/4}} \vee \sqrt{\frac{\log(n(1-\beta_n))}{n}} \ll \log(\lambda_n) \ll \frac{1}{\sqrt{n(1-\beta_n)}}.$$

Then, as  $n \to \infty$ ,

$$T_n \stackrel{d}{=} \left( \frac{(\log(\lambda_n))^2 n(1-\beta_n)}{2\xi^2 S_n(\beta_n,\tau_{1:L})} - \frac{\sqrt{2n(1-\beta_n)}\log(\lambda_n)s_n(\beta_n,\tau_{1:L})}{\xi S_n(\beta_n,\tau_{1:L})} \Gamma + \frac{1+S_n(\beta_n,\tau_{1:L})}{S_n(\beta_n,\tau_{1:L})} \Gamma^2 \right) \times \left( 1 + O_{\mathbb{P}} \left( \frac{1}{\sqrt{n(1-\beta_n)}} \right) + O_{\mathbb{P}} \left( \frac{1-\beta_n}{\log(n(1-\beta_n))} \right) \right)$$

where  $\Gamma$  is a standard normal random variable.

## Pareto samples with different scale parameters

By assuming the slightly stronger condition

$$\frac{(\log(n(1-\beta_n)))^2}{(n(1-\beta_n))^{3/4}} \vee \sqrt{\frac{(\log(n(1-\beta_n)))^3}{n}} = o(\log(\lambda_n)),$$

then the probability  $\mathbb{P}_{H_{1,n}}(T_n \leq \chi^2_{1,1-\gamma})$  to (wrongly) not reject  $(H_0)$  with asymptotic level  $\gamma \in (0,1)$  is for large *n* approximately equal to

$$\bar{\Phi}\left(\Omega_{1,n}-\sqrt{\Omega_{2,n}}\right)-\bar{\Phi}\left(\Omega_{1,n}+\sqrt{\Omega_{2,n}}\right),$$
 where

$$\begin{split} \Omega_{1,n} &= \frac{\log(\lambda_n)\sqrt{n(1-\beta_n)}s_n(\beta_n,\tau_{1:L})}{\sqrt{2}\xi \left(1+S_n(\beta_n,\tau_{1:L})\right)},\\ \Omega_{2,n} &= \frac{\left(\log(\lambda_n)\right)^2 n(1-\beta_n)}{2\xi^2} \frac{s_n(\beta_n,\tau_{1:L})^2 - 1 - S_n(\beta_n,\tau_{1:L})}{\left(1+S_n(\beta_n,\tau_{1:L})\right)^2} \\ &+ \frac{S_n(\beta_n,\tau_{1:L})}{1+S_n(\beta_n,\tau_{1:L})}\chi_{1,1-\gamma}^2 > 0. \end{split}$$

ANOV



Figure 4: Empirical (solid curves) and approximated (dashed curves) type II errors obtained for 10,000 replications with n = 1,000 and  $\beta_n = 0.9$ , shown as functions of *L*. Left:  $\lambda_n = 1 + 2n^{-1/3} = 1.2$  and  $\xi = 0.15$  (blue curves),  $\xi = 0.25$  (green curves),  $\xi = 0.35$  (purple curves) and  $\xi = 0.5$  (red curves). Right:  $\xi = 0.25$  and  $\lambda_n = 1.1$  (blue curves),  $\lambda_n = 1.2$  (green curves),  $\lambda_n = 1.3$  (purple curves) and  $\lambda_n = 1.4$  (red curves).

Consider two independent samples  $E_1 = \{X_1^{(1)}, ..., X_n^{(1)}\}$  and  $E_2 = \{X_1^{(2)}, ..., X_n^{(2)}\}$ , where

$$(H'_{1,n})$$
  $X_i^{(1)} \sim \mathcal{P}(1/\xi)$  and  $X_i^{(2)} \stackrel{d}{=} (X_i^{(1)})^{\theta_n}$ ,  $i = 1, \dots, n$  and  $\theta_n \to 1$  as  $n \to \infty$ .

Let us assume that  $(\theta_n)_n$  satisfies the same conditions as  $(\lambda_n)_n$ .

## Pareto samples with different shape parameters

#### **Proposition 4**

$$\begin{split} T_n &\stackrel{d}{=} 2\left(\frac{n(1-\beta_n)(1-\theta_n)^2}{(1+\theta_n)^2}\frac{\mathrm{smlog}(n/\tau_{1:L})}{S_n(\beta_n,\tau_{1:L})} + \frac{(1+\theta_n^2)}{(1+\theta_n)^2}\frac{1+S_n(\beta_n,\tau_{1:L})}{S_n(\beta_n,\tau_{1:L})}\Gamma^2 \right. \\ & \left. + 2\frac{\sqrt{n(1-\beta_n)}\sqrt{1+\theta_n^2}(1-\theta_n)}{(1+\theta_n)^2}\frac{\mathfrak{s}_n(\beta_n,\tau_{1:L})}{S_n(\beta_n,\tau_{1:L})}\Gamma\right) \\ & \times \left(1+O_{\mathbb{P}}\left(\frac{1-\beta_n}{\log(n(1-\beta_n))}\right) + O_{\mathbb{P}}\left(\frac{1}{\sqrt{n(1-\beta_n)}}\right)\right), \text{ as } n \to \infty, \end{split}$$

where  $\Gamma$  is a standard normal random variable and

$$\operatorname{smlog}(n/\tau_{1:L}) = \frac{1}{L} \sum_{\ell=1}^{L} \left( \log \left( n/\tau_{\ell} \right) \right)^2$$

Under a slightly stronger assumption on  $\theta_n$ , then the probability  $\mathbb{P}_{H'_{1,n}}(T_n \leq \chi^2_{1,1-\gamma})$  to (wrongly) not reject  $(H_0)$  with asymptotic level  $\gamma \in (0,1)$  may be approximated by for n large enough by

$$\bar{\Phi}\left(\Psi_{1,n}-\sqrt{\Psi_{2,n}}\right)-\bar{\Phi}\left(\Psi_{1,n}+\sqrt{\Psi_{2,n}}\right)$$

where

$$\begin{split} \Psi_{1,n} &= \frac{\sqrt{n(1-\beta_n)}(\theta_n-1)\mathfrak{s}_n(\beta_n,\tau_{1:L})}{\sqrt{1+\theta_n^2} \left(1+S_n(\beta_n,\tau_{1:L})\right)},\\ \Psi_{2,n} &= \frac{(\theta_n-1)^2 n(1-\beta_n)}{(1+\theta_n^2)} \frac{\mathfrak{s}_n(\beta_n,\tau_{1:L})^2 - (1+S_n(\beta_n,\tau_{1:L})) \operatorname{smlog}(n/\tau_{1:L})}{(1+S_n(\beta_n,\tau_{1:L}))^2} \\ &+ \frac{(1+\theta_n)^2}{(1+\theta_n^2)} \frac{S_n(\beta_n,\tau_{1:L})}{1+S_n(\beta_n,\tau_{1:L})} \frac{\chi_{1,1-\gamma}^2}{2} > 0. \end{split}$$



Non-rejection probability

Figure 5: Empirical (solid curves) and approximated (dashed curves) type II errors obtained for 10,000 replications with n = 1,000 and  $\beta_n = 0.9$ , shown as functions of *L*.  $\xi = 0.25$  and  $\theta_n = 1 + n^{-1/3} = 1.1$  (green curves),  $\theta_n = 1.2$  (brown curves),  $\theta_n = 1.3$  (blue curves) and  $\theta_n = 1.4$  (red curves).

## A note on the proofs

We denote  $k_n = \lfloor n(1 - \beta_n) \rfloor$ . If  $E_1$  and  $E_2$  are Pareto distributed, the Rényi's representation<sup>1</sup> provides

$$\widehat{\xi}_1(\beta_n) - \widehat{\xi}_2(\beta_n) \stackrel{d}{=} \frac{(\mathcal{E}_1^{(1)} - \mathcal{E}_1^{(2)}) + \ldots + (\mathcal{E}_{k_n}^{(1)} - \mathcal{E}_{k_n}^{(2)})}{k_n} \stackrel{d}{=} \frac{\mathcal{L}_1 + \ldots + \mathcal{L}_{k_n}}{k_n},$$

where  $\{\mathcal{E}_1^{(j)}, \ldots, \mathcal{E}_{k_n}^{(j)}\}$  and  $\{\mathcal{L}_1, \ldots, \mathcal{L}_{k_n}\}$  are i.i.d. realizations of an exponential distribution with mean  $\xi$  and a centered Laplace distribution with variance  $2\xi^2$ , respectively.

Since the Laplace distribution is log-concave, centered and symmetric, Klartag 2009<sup>2</sup> proved that the Berry-Esseen bound is refined with  $k_n$  instead of  $\sqrt{k_n}$ .

<sup>1</sup>Rényi, A. (1953). On the theory of order statistics. *Acta Mathematica Academiae Scientiarum Hungarica*, **4(2)**:191–231.

<sup>2</sup>Klartag, B. (2009). A Berry-Esseen type inequality for convex bodies with an unconditional basis. *Probability Theory and Related Fields*, **145(1)**:1–33.

AN AN



#### 2 Test statistic and asymptotic distribution

#### 3 Examples of type-I and type-II error approximations





## **Real data example**

We use the last n = 1,000 negative daily log-returns for J = 12 stock market indices (before June 16, 2023 included), BIST 100 (Turkey), IBOVESPA (Brazil), IPC Mexico, KOSPI Composite (South Korea), MOEX Russia, PSEi (Philippines), S&P BSE 500 (India), S&P MERVAL (Argentina), SSE Composite (China), TA-125 (Israel) and Tadawul All Shares (Saudi Arabia). We also added the European Euro Stoxx 50 in the study.



As in Jondeau and Rockinger 2003<sup>3</sup>, we propose to test the equality of the tails, and identify clusters of stock indices having the same extreme quantiles.

For that purpose, we use the ANOVEX statistic as a dissimilarity measure to construct a dendrogram, and select the optimal number of groups by hierarchically applying the ANOVEX test.

<sup>3</sup> Jondeau, E. and Rockinger, M. (2003). Testing for differences in the tails of stock-market returns. *Journal of Empirical Finance* **10** 559–581.

## Real data example



31

It is interesting to notice this procedure tends to split the samples mainly into two groups:

- a first one containing the indices from Central and South America (and the indian, korean and turkish indices as well),
- a second one containing the other Eurasian indices (including the Euro Stoxx 50).

## Conclusion

- Girard, S., Opitz, T. and Usseglio-Carleve, A. (2024). ANOVEX: ANalysis Of Variability for heavy-tailed EXtremes, *Electronic Journal of Statistics*, **18(2)**, 5258–5303.
- R package ANOVEX https://github.com/AntoineUC/ANOVEX.

Application in change-point detection coming soon (with C. Yan)...



## **References I**

- [Hil75] Bruce M. Hill. "A Simple General Approach to Inference About the Tail of a Distribution". In: The Annals of Statistics 3.5 (Sept. 1975), pp. 1163–1174. DOI: 10.2307/2958370. URL: http://gen.lib.rus.ec/scimag/index.php?s=10.2307/2958370.
- [JR03] Eric Jondeau and Michael Rockinger. "Testing for differences in the tails of stock-market returns". In: Journal of Empirical Finance 10.5 (2003), pp. 559–581.
- [Kla09] B. Klartag. "A Berry-Esseen type inequality for convex bodies with an unconditional basis". In: Probability Theory and Related Fields 145.1 (2009), pp. 1–33.
- [Wei78] Ishay Weissman. "Estimation of parameters and large quantiles based on the k largest observations". In: Journal of the American Statistical Association 73.364 (1978), pp. 812–815.