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Motivation

In practice, it is frequent to ask whether two or more groups of

individuals come from the same population (for data pooling issues
or the study of the impact of a categorical variable for instance).
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A widespread tool is the classical ANOVA.




@ From ANOVA to ANOVEX




From ANOVA...

Let us consider J > 1 samples £; = (X7 i=1,... 0} j=1,...,J,
with independence between somples and possbly dlfferent
sample sizes n; > 1 (such that n; = O(n), for all j).. We assume that
the random variables in each E; are identically distributed
according to a cumulative distribution function Fj, with mean

i = [p(1— Fj(1))dt

The classical ANalysis Of VAriance (ANOVA) aims at testing the

equality of the means uq, ..., uy, based on the decomposition:
J
SN (X0 %) =3 (30 X) Y (60 X
j=1 i=1 j=1 j=1 i=1

toto\ var. var. between samples var. within samples




From ANOVA...
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Figure 1: ANalysis Of VAriance (ANOVA) for two normal distributions.




... to ANOVEX

Instead of testing the equality of the means (i.e. the body) of the
samples, we propose to test the equality of the tails:
(Hy) Forall (4,7) € {1,..., J}* with j # 7, we have g; (a)/g;(a) — 1
asa — 1.
For that purpose, we consider L € N* extreme quantile levels
Ql,ps- -5y (i€ such that n(1 — ay,) = O(1) forall £ € {1,..., L}).
The key will be the decomposition of the term:

L
=

J J L
1 _ 1
Ap = L E E (log Gj(ae,n) = tayn)?s With pia,n = TL § :E : og gj(are,n)
sy j=1 £=1

total var.

and g;(a,,) is an estimator of gj(ay,y).

Note that the existence of u; is not necessary !




... to ANOVEX

The decomposition A, = Ay , + Ag ,, holds where

| L L §
Bin= =7 > [ 1ogGi(oum) - jZlOgaj(al,n) :
=1 j=1 =1

var. due to the different samples

2
1

L J
1 _
Ay = I ; 5 ]_Zl log gj(cu,n) — ta,n

_

s
var. due to the different quantile levels




... to ANOVEX
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Figure 2: Decomposition of extreme log-quantile variance for a standard
normal (black curve) and a Student's ¢ distribution 3 degrees of freedom
(red curve), for two extreme quantiles at probability levels {0.98,0.99}.




Unfortunately, estimating an extreme quantile is not an obvious
task, and some conditions are required.

o (5(&, p, A): A cumulative distribution function F belongs to the
class C2(&, p, A) with tail index £ > 0 and second-order
parameter p < 0, if there exists a measurable auxiliary function
A with constant sign, satisfying A(t) — 0 as ¢t — oo, such that

1 F(t pIE 1
im (M_y—w):y—uwg_, forally >0,
p

F(1)




@ Test statistic and asymptotic distribution




Extreme quantile estimator

In order to estimate the extreme quantiles in A; ,, and A, ,,, we use
the approach proposed by Weissman 1978:

e We carefully choose intermediate quantile levels 3;,, — 1 such
that n;(1 — 3;,,) = n(l — 5,)(1 + o(1)) — oo as n — 0.

e We estimate the tail indices &1, . . ., £y using the Hill estimator:

LA=Bjn)ns] -1

1
long_l n —log XV

§i(Bin) = =B ; i (1= Bj.n) 1) 1my”

where ng)n] < Xé’)nj <...< Xﬁfj)n] (see Hill 1975).
o We deduce the Weissman extreme quantile estimator

1_ 5j,n )5;‘(/5’]‘,")

1- Qpon

B (an Bin) = 4(Bin) (




ANOVEX test statistic

For convenience, let us consider in the sequel
app=1—19/n,7y >0forl=1,... L.

We thus define the ANOVEX test statistic

Jvarlog(r1.1) n(1 = ) Au
Sn(ﬁnaTl:L) A2,n’

Tn -

where

I 2
1
varlog(7i.1,) Z; log (1¢))” — ( Zlog T ) and
L 2
1 Bn)
Sn(Bn, T1:1) = EZ (log <—)> .




ANOVEX test statistic

Suppose that F; € Co(&;, pj, Aj) forj=1, ..., J. Moreover, we
assume

V(L= Ba)A; (1= Ba)7Y) =0, n—oo, forallj=1,...,J.

Then, under (Hp),

o
T, = X%_l, n — 00.

The ANOVEX test rejects (Hy) with asymptotic level v € (0, 1) if

Jvarlog(r1..) n(1 — ) A1n 5
T, = — > X7 11—
SulBrtin)  Da, LI

where X2171,177 denotes the quantile of level 1 — v of the
chi-square distribution with J — 1 degrees of freedom.

AN X AUC 03/0:




® Examples of type-| and type-Il error approximations




Type-l and type-Il error approximations

Let us denote for convenience

Sn(ﬂna 7-1:L) =

and sn(ﬁna Tl:L) ==

(NC=D)s
e (2) o (22

£=1

We will deal with three situations (all in the case J = 2):
© Two identically distributed Pareto samples,
® Two Pareto samples with different scale parameters,
® Two Pareto samples with different shape parameters.




Identically distributed Pareto samples

Proposition 2

Consider two independent samples E; = {ng), ey X9 L i=1,2 of
iid. variables following the same Pareto distribution P(1/€), £ > 0.
Assume that (8,) is an intermediate probability level such that
(1= pBp)log(n) — 0as n— 0. Then, as n — oo,

1
T, 42 <1 + —)
Sn(lgm 7-1:L)

% 1 1-— ﬁn
(”O“” <—n(1 - m)) o <log<n<1 - /37))))

where T is a standard normal random variable.




Identically distributed Pareto samples

The probability Py, (Tn > x3,_.,) to wrongly reject (Hy) with
asymptotic level v € (0,1) is for large n approximately equal to

~1/2
pu(y) = 20 (é—lwm (" sm) ) ’

where @(-) is the standard Gaussian survival function.




Identically distributed Pareto samples
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Figure %: Empirical (solid curves) and approximated (dashed curve) type |
errors obtained for 10, 000 replications with n = 1,000, 8, = 0.9 and

¢ = 0.25, as functions of L. The underlying distribution is a Pareto (blue),
Fréchet (purple), Burr with p = —0.75 (green) and GPD (red) distribution.




Pareto samples with different scale parameters

Consider two independent samples denoted by

E = {X<11), .. .,Xﬁll)} and E, = {X(f), .. .,Xﬁf)} where

(Hi,n) )dil) ~ P(1/¢) and X,E-Q) 4 A,I,)(gl), i=1,...,nand \, — 1 as
n — 00.

The condition A, — 1 (and in a sense (Hi,,) — (Hp)) is a concept
known in the literature as the contiguity.




Pareto samples with different scale parameters

Assume that

log(n(1 = Bn)) |, [log(n(1 = Br)) 1

(1= Bo))o/A << log(\,) <<

Then, as n — oo,

p 4 ((Qos(n)? (1 = Bn) _ /20(1 = Br) log(An)sn(Bn, TiiL) |
" 2628n(Bn, T1:1) §Sn(Bn, T1:1)

Vn(l— ﬂn)'

1+ Sn(Bn, T1:1) 12 1 1— 8,
e s ) (1 o <\/7n(1 = m)) +0r (g ﬂn)))>

where I is a standard normal random variable.




Pareto samples with different scale parameters

By assuming the slightly stronger condition

= O(IOg(An))7

(log(n(1 — $.)))* \/ (1og(n(1 — $.)))°
(n(1 — )5/ n

then the probability P, (7, < x7, ) to (wrongly) not reject (Hp)
with asymptotic level v € (0, 1) is for large n approximately equal to

o (le — \/E) - (Ql,n + \/E) , Where

_ 10g()\n) n(l - 3n)5n(5n,T1:L)
V26 (14 Sp(Bp i)
(log(A)” (1 = B1) $u(Bus 71:0)* = 1 = Su(Bns T1:L)
S (14 Spn(Bn, Tl:L))2
Sn(ﬁm 7'lzL) 2
1+ (B, 71.0) 1

Ql,n

QQ,n =

+ > 0.




Pareto samples with different scale parameters
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Figure 4: Empirical (solid curves) and approximated (dashed curves) type |l
errors obtained for 10,000 replications with n = 1,000 and 3,, = 0.9, shown
as functions of L. Left: A, = 1 + 2n~ /3 = 1.2 and ¢ = 0.15 (blue curves),

& = 0.25 (green curves), £ = 0.35 (purple curves) and € = 0.5 (red curves).
Right: ¢ = 0.25 and X\, = 1.1 (blue curves), \,, = 1.2 (green curves), A, = 1.3
(purple curves) and A, = 1.4 (red curves).




Pareto samples with different shape parameters

Consider two independent samples E; = {Xgl), cey X(nl)} and
E, = {X?), e Xﬁlz)}, where

(H}.,) MU Pr1/¢) and Xf;z) 4 (Xf;l))en, i=1,...,nand 0, — 1as

3

n — 0Q.

Let us assume that (6,,),, satisfies the same conditions as (Ay,) .




Pareto samples with different shape parameters

1, & o (20 B 0o smlog(n/rg) , (1:+8) 1 Sn(on i)
" (1 + gn)2 Sn(/Bm 7'1:L) (1 = Gn)Q Sn(Bn» T1: L)
o /ML= B V/IF BR(L = 0a) sn(Br i) 1
(1 + 071)2 Sn(/BmleL)

Bn 1
* (HOP <1og(n(1—ﬁn))) O'P (y/n(l—ﬁn)>> P asm T ee,

where T is a standard normal random variable and

L
1
smlog(n/7.1,) =7 Z (log (n/7¢))?
=1




Pareto samples with different shape parameters

Under a slightly stronger assumption on 6,,, then the probability
P (T, < x7, ) to(wrongly) not reject (Hp) with asymptotic
level v € (0,1) may be approximated by for n large enough by

& (V1= Vo) =@ (V10 + /T2
where

N, _V n(l - ﬂn)(on - 1)5n(/6m 7'1:L)
Y IR B (L4 Su(Brmir)
(0, —1)2n(1 = Bp) 50(Bns 71:0)% — (1 + Sn(Bn, 71.1)) smlog(n/71.1.)
(1467) (1 + Su(Brym1.1))°

(1 + On)Q Sn(ﬂmleL) X%,l—’y

\112,n =

> 0.

(]- + 0%) 1 + Sn(ﬂn, Tl:L) 2




Pareto samples with different shape parameters
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Figure 5: Empirical (solid curves) and approximated (dashed curves) type |l
errors obtained for 10, 000 replications with n = 1,000 and 3, = 0.9, shown
as functions of L. € = 0.25 and 6,, = 1 + n~ /3 = 1.1 (green curves),

0, = 1.2 (brown curves), 8,, = 1.3 (blue curves) and 6,, = 1.4 (red curves).




A note on the proofs

We denote k, = |n(1 — B,)]. If Ey and FE, are Pareto distributed,
the Rényi's representation’ provides

d (€M — ) 4+ (6D~ 4 Lt ..+ L

€1(Bn) — E2(Bn)

kn, Ky, ’

where {Sl(j), .. ,8,51)} and {L4,..., L, } are iid. realizations of an
exponential distribution with mean £ and a centered Laplace
distribution with variance 2¢€2, respectively.

Since the Laplace distribution is log-concave, centered and
symmetric, Klartag 2009 proved that the Berry-Esseen bound is
refined with k&, instead of v/k,.

'Rényi, A. (1953). On the theory of order statistics. Acta Mathematica
Academiae Scientiarum Hungarica, 4(2):191-231.

“Klartag, B. (2009). A Berry-Esseen type inequality for convex bodies with an
unconditional basis. Probability Theory and Related Fields, 145(1):1-33




O Real data example




Real data example

We use the last » = 1,000 negative daily log-returns for J = 12
stock market indices (before June 16, 2023 included), BIST 100
(Turkey), IBOVESPA (Brazil), IPC Mexico, KOSPI Composite (South
Korea), MOEX Russia, PSEi (Philippines), S&P BSE 500 (India), S&P
MERVAL (Argentina), SSE Composite (China), TA-125 (Israel) and
Tadawul All Shares (Saudi Arabia). We also added the European
Euro Stoxx S0 in the study.
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Real data example

As in Jondeau and Rockinger 2003°, we propose to test the
equality of the tails, and identify clusters of stock indices having
the same extreme quantiles.

For that purpose, we use the ANOVEX statistic as a dissimilarity
measure to construct a dendrogram, and select the optimall
number of groups by hierarchically applying the ANOVEX test.

*Jondeau, E. and Rockinger, M. (2003). Testing for differences in the tails of
stock-market returns. Journal of Empirical Finance 10 559-581.




Real data example
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Real data example

It is interesting to notice this procedure tends to split the samples
mainly into two groups:
e a first one containing the indices from Central and South
America (and the indian, korean and turkish indices as well),
e a second one containing the other Eurasian indices (including
the Euro Stoxx 50).




Conclusion

e Girard, S, Opitz, T. and Usseglio-Carleve, A. (2024). ANOVEX:
ANalysis Of Variability for heavy-tailed EXtremes, Electronic
Journal of Statistics, 18(2), 5258-5303.

e R package ANOVEX https://github.com/AntoineUC/ANOVEX.
Application in change-point detection coming soon (with C. Yan)...

Bitcoin ANOVEX statistic
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https://github.com/AntoineUC/ANOVEX
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