Principal Component Analysis for Dependent Functional Data: Incorporating Spatial and Temporal Structures

> Sophie Dabo-Niang CRM-Université de Montreal, CNRS Univ. Lille, UMR 8524 Painleve, Inria Modal Sophie.dabo@univ-lille.fr

Journées de Statistique et Optimisation, Perpignan, 2-4 April 2025

Functional Data

Usual Setting

- X is a random function valued in a space (\mathcal{F} , d) of eventually infinite dimension.
- \$\mathcal{F}\$ is typically the space \$\mathbb{L}^2\$ of square integrable functions defined on some finite interval \$\mathcal{D} = [a, b]\$.
- *n* i.i.d. functions $X_1, X_2, \ldots, X_n \sim X$ are observed on \mathcal{D}

Spatio-temporal pollution data

Source : Frévent, Ahmed, Dabo-Niang, Genin (2023). " Investigating spatial scan statistics for multivariate functional data".

JRSS C.

Spatial Acoustic Data (Sv)

- 2 dimensions : vertically (depths), horizontally (Elementary Sampling Unit; ESU) in distance (here 0.1 nmi).
- 3 descriptors (depth in meter, thickness in meter, and relative density (mean s_A)) using Matecho.

Echogram representing the acoustic intensities

Source : Kande et al. (2024). "Investigating multivariate spatial functional data analysis for acoustic data". Ecological Informatics

Repeated functional data (Finger Movements)

Source : Moindjie et al. (2025). Fusion regression methods with repeated functional data. CSDA

- Functionality allows broader spectrum of models
 - Estimating model parameters using a single sequence may be limited
 - Time series analysis inherently operates on discrete data, with time stamps assumed to be equally spaced and fixed
- Biological structures are synonymous with Functionality
 - For proteins, the sequence leads to folding (structure), which ultimately determines their function.

Comprehending functions necessitates a grasp of structures.

Structure analysis involves a foundation of mathematical representations followed by the application of probabilistic superstructures. FDA finds application across all branches of science and engineering.

- Meteorology/environment : temperature prediction
- **Computer Vision** : depth sensing, activity recognition, vision-based automation, and the analysis of video data.
- **Computational Biology** : Involves studying complex biomolecular structures and understanding the relationship between organism shapes and functionality.
- **Biometrics and Human Identification** : Includes recognition of human face, body, gait, etc.
- Wearables, Mobility, Fitness : Utilized in devices like Fitbit, sleep studies, and motion capture (MoCap) technology.
- Electricity : Forecasting electricity consumption.
- Mining, natural sciences, economics, finance, etc

Historical Perspective

An old topic, lots of work already in the past

"FDA" by Jim Ramsay and colleagues in late 1980s

... 1982

1997

Celebrating 100 years of the functional linear model

FDA has roots going back to the work of Fisher (1924)

R.A. Fisher in 1924

Disregarding, then, both the arithmetical and the statistical difficulties, which a direct attack on the problem would encounter, we may recognise that whereas with q subdivisions of the year, the linear regression equations of the wheat crop upon the rainfall would be of the form

$$w = c + a_1 r_1 + a_2 r_2 + \ldots + a_q r_q$$

where $r_1, r_2, ..., r_q$ are the quantities of rain in the several intervals of time, and $a_1, ..., a_q$ are the regression coefficients, so if infinitely small subdivisions of time were taken, we should replace the linear regression function by a *regression integral* of the form

$$w = c + \int_{a}^{t} ar dt$$
, (III)

where r dt is the rain falling in the element of time dt; the integral is taken over the whole period concerned, and a is a *continuous* function of the time t, which it is our object to evaluate from the statistical data.

Thanks to the "Historical FDA elements" by Gilbert Saporta (2024)

Celebrating 50 years of functional PCA

Statistical and numerical methods of harmonic analysis by Deville (1974)

Dependency-dimension-structures-nature of sample

- Shapes, complexe structures, multivariate,...
- Non random sample

• Time/Spatially dependent series : everything is related to everything else, but near things are more related than distant things (Tolber, 1970) Data as observation of a random variable valued in a (complex) space of functions :

$$\mathbf{X} = \left\{ \left(X^1(t_1), ..., X^p(t_p)\right)^\top : t_j \in \mathcal{T}_j, j = 1, ..., p \right\},$$

$$X_{t_i}: \mathcal{P}_j \to \mathcal{S}_j$$

$$\begin{aligned} \mathcal{T}_{j} &\subseteq \mathbb{R}, \ \mathcal{S}_{j} = \mathbb{R} \ (\mathsf{curve}) \\ \mathcal{T}_{j} &\subseteq \mathbb{R}, \ \mathcal{S}_{j} = \{e_{1}, e_{2}, \dots, e_{K}\} \ (\mathsf{sequence}) \\ \mathcal{T}_{j} &\subseteq \mathbb{R}^{2}, \ \mathcal{S}_{j} = \mathbb{R} \ (\mathsf{image/surface}) \end{aligned}$$

Multivariate functions, images : $f : [0,1]^2 \rightarrow \mathbb{R}^2$

Source : Srivastava

Structures

Source : Srivastava

Gaming, Remote sensing, Mobile depth sensing ...

Source : Srivastava

- PCA of time/spatial functional series
- the considered sample is composed of :
 - spatially dependent observations, collected by random sampling process
- specificity of the proposed methods : taking into consideration the sample nature

applications to regression/classification

FPCA in usual setting and applications to supervised learning

X is a random function valued in \mathbb{L}^2 .

• Mean function :

$$\mu(t) = E(X(t))$$

• Covariance function :

$$c(t,u) = E\Big((X(t) - \mu(t))(X(u) - \mu(u))\Big)$$

Sample mean, standard deviation and covariance

Pointwise mean :

$$\bar{X}_n(t) = \frac{1}{n} \sum_{i=1}^n X_i(t)$$

Pointwise standard deviation :

$$S_n(t) = \sqrt{rac{1}{n-1}\sum_{i=1}^n \left(X_i(t) - ar{X}_n(t)
ight)^2}$$

Pointwise covariance function :

$$\hat{c}_n(t,u) = rac{1}{n-1}\sum_{i=1}^n \Big(X_i(t) - ar{X}_n(t)\Big)\Big(X_i(u) - ar{X}_n(u)\Big)$$

- $\bar{X}_n(t)$ and $\hat{c}_n(t, u)$ are estimators of the population parameters $\mu(t)$ and c(t, u).
- *c*_n(t, u) is interpreted in a similar way as the usual variance-covariance matrix and is largely used in FDA.

Let $X_1, ..., X_n$ be i.i.d (independent and identically distributed) observations of X

Sample mean, standard deviation and covariance of Brownian Motion

FPCA in usual setting and applications to supervised learning

Modes of variability (PCA)

Covariance function and Principal Component Analysis

Functional Principal Component Analysis (FPCA), allows to represent a square integrable random function X as :

$$X(t) = \mu(t) + \sum_{j=1}^{\infty} \xi_j v_j(t)$$

(Karhunen-Loéve (KL) expansion)

• v_j are the eigenfunctions and solutions of

$$\int_{\mathcal{D}} c(t, u) v_j(u) du = \lambda_j v_j(t)$$

- $\lambda_1 \geq \lambda_2 \geq \ldots$ are the **eigenvalues**.
- The random variables ξ_j are the scores

$$\xi_j = \langle X - \mu, v_j
angle = \int_{\mathcal{D}} (X(t) - \mu(t)) v_j(t) dt$$

λ_j is the variance of X in the principal direction v_j

The KL deccomposition is commonly attributed to Kari Karhunen (1946) and Michel Loève (1946) but it has been obtained earlier by D.D.Kosambi (1943)

D. D. KOSAMBE $\vec{h}(s,t) = \Im \sigma_{i}^{2} \phi_{i}(s) \phi_{i}(t),$ The ¢ are the orthonormal characteristic (eigen-) functions of the kernel, of the corresponding characteristic values $(=1/\lambda)$ in the notation of 2), all positive with Σa_i^+ convergent (2, 111). The orthogonal or independent co-ordinates for any function f(t) are obviously the "Fourier" co-efficients x1, x2,..., x..., with $x_i = \int (t) \phi_i(t) dt, \quad f(t) = \Sigma x_i \phi_i(t).$

FPCA in practice and dimension reduction by FPCA

 Use the Estimated Functional Principal Components (EFPC's) v_j as basis functions for X_i :

$$X_i(t)pproxar{X}_n(t)+\sum_{j=1}^{
ho_n}\hat{\xi}_{ij}\hat{v}_j(t)$$

- Estimated scores : $\hat{\xi}_{ij} = \int_{\mathcal{D}} (X_i(t) \bar{X}_n(t)) \hat{v}_j(t) dt$
- EFPC's \hat{v}_j are **orthonormal**, i.e.

$$\int_{\mathcal{D}} \hat{v}_j(t) \hat{v}_k(t) dt = \begin{cases} 1, & j = k \\ 0, & j \neq k. \end{cases}$$

Choice of the dimension p_n

Application to Canadian weather data

First smooth the data

Principal components (eigen) functions

Scores

Approximation with the first p = 3 PCA basis functions

PCA of spatial multivariate functional data

- We consider daily temperature data recorded at *n* stations from the meteorological monitoring network.
- We have *M* data at each station corresponding to daily records of maximum temperature obtained from a given period
- Prediction of the whole temperature curve at a given station
- The spatio-temporal dataset could be analyzed by using, space-time geostatistics (space-time kriging, see Cressie and Wikle, 2011).

Geospatial functional data

Modeling spatial functional data

- Modelization of functional data basically focuses on independent data.
- In many applied domains, data are spatially correlated functions : economic, environmental, hydrology, ...

Example : curves of daily concentration of ozone at two near stations

- Some works are developed to deal with spatially correlated functional data
 - Functional geostatistical data :

PCA and clustering : Kuenzer et al. (2022), Vandewalle et al. (2022), Frevent et. al (2023),... PCA and Moran statistics : Assan et al. (2019), Darbi et al (2022) ,..., Kriging methods : Monestiez aand Nerini (2008), Giraldo et al. (2010), Bohorquez et al. (2016), ... Nonparametric regression : Ternynck (2014), Dabo-Niang et al. (2011, 2018, 2020),...

Lattice functional data : less developed

Ruiz-Medina (2012) : prediction of SAR hilbertian processes

Pineda-Rios and Giraldo (2016), Zhang et al. (2016); Ahmed et al. (2021); Huang et al. (2018) : FLMs with SAR disturbance process

Basic notations for functional geo-spatial data

- X = (X_s(.), s ∈ ℝ^N), a measurable spatial process N ≥ 1, defined on some probability space (Ω, A, P)
- X_s is valued in a space (\mathcal{X}, d) of eventually infinite dimension
- d(.,.) is some measure of proximity, e.g. a metric or a semi-metric
- \mathcal{X} is a space of functions, typically $\mathcal{T} = [0, T]$.
- X is observed at a set of locations $S \subseteq \mathbb{R}^N$ of cardinal $n, S = \{s_1, \ldots, s_n\}$, $s_i \in \mathbb{R}^N$, $i = 1 \ldots n$ and a set of time points $\mathcal{J} = \{t_1, \ldots, t_M\}$, M
- *E* the set of the $n \times M$ discrete observations, $E = \{x_{s_i}(t_j), s_i \in S, t_j \in \mathcal{J}\}.$
- Prediction of a whole curve $X_{\mathbf{s}_0} = \{X_{\mathbf{s}_0}(t), t \in \mathcal{T}\}$

- The discrete data $\{x_{s_i}(t), s_i \in S, t \in \mathcal{T}\}$ are converted into curves $\{X_{s_i}(t), s_i \in S, t \in \mathcal{T}\}$ by using smoothing methods (e.g. Splines).
- $\{X_{s_i}(t), s_i \in S, t \in \mathcal{T}\}$ are valued in $\mathcal{X} = L^2[0, T]$
- Expand each $X_{s_i}(.)$ in terms of basis functions (here FPC).
- Take into acount the spatial dimension into the FPCA

Spatial dependence

Weakly stationary functional process

(i) $\mathbb{E}(X_{s}(t)) = \mathbb{E}(X_{0}(t)) = \mu(t), t \in \mathcal{T}$ does not depend on **s** with **0** the zero vector in \mathbb{R}^{N} (ii) for all **s**, **h** \in *S*, and $t, s \in \mathcal{T}$;

$$C_{h}(t,s) := Cov\left(X_{h}(t), X_{0}(s)\right) = Cov\left(X_{s+h}(t), X_{s}(s)\right)$$

depends only on the spatial lag.

Variogram function

$$2\gamma_{t,t'}(\mathbf{h}) = \operatorname{Var}(X_{\mathbf{s}+\mathbf{h}}(t) - X_{\mathbf{s}}(t'))$$

 $\gamma_t(\mathbf{h}) = \gamma_{t,t}(\mathbf{h})$

Trace Variogram function

$$\gamma(\mathbf{h}) = \int_{\mathcal{T}} \gamma_t(\mathbf{h}) dt$$
 $2\gamma(\mathbf{h}) = E \int_{\mathcal{T}} (X_{\mathbf{s}_i}(t) - X_{\mathbf{s}_j}(t))^2 dt, \ \mathbf{h} = \mathbf{s}_i - \mathbf{s}_j, \ \mathbf{s}_i, \mathbf{s}_j \in S$

Spectral Spatial FPCA (SFPCA)

Kuenzer et al. (2020), Si-Ahmed et al. (2024).

Let S be a regular grid (rectangular domain) of \mathbb{Z}^N , \mathcal{F}^X_{θ} be the spectral density operator of X_s with kernel :

$$f_{\theta}^{X}(t,s) := \frac{1}{(2\pi)^{N}} \sum_{\mathbf{h} \in \mathbb{Z}^{N}} C_{\mathbf{h}}(t,s) \exp(-i\mathbf{h}^{\top}\theta)$$
(1)

$$\mathcal{F}_{\theta}^{X} = \sum_{m \ge 1} \lambda_{j,m}(\theta) \varphi_{m}(\theta) \otimes \varphi_{m}(\theta)$$
(2)

where $\lambda_m(\theta) \geq \lambda_m(\theta) \geq ... \geq 0$

$$\varphi_m(t|\theta) = \sum_{\mathbf{l}\in\mathbb{Z}^N} \phi_{m,\mathbf{l}}(t) \exp(-i\mathbf{l}^\top \theta).$$
(3)

The functional principal component score is defined as :

$$\xi_{m,\mathbf{s}} := \sum_{\mathbf{l} \in S} \left\langle X_{\mathbf{s}-\mathbf{l}}, \phi_{m,\mathbf{l}} \right\rangle \tag{4}$$

SFPCA

Karhunen-Loève-Kosambi spatial expansion :

$$X_{\mathbf{s}}(t) = \sum_{m=1}^{\infty} X_{m,\mathbf{s}}(t), \ X_{m,\mathbf{s}}(t) := \sum_{\mathbf{l} \in \mathbb{Z}^N} \xi_{m,\mathbf{s}+\mathbf{l}} \phi_{m,\mathbf{l}}(t), \quad t \in \mathcal{T}$$
(5)

The spectral density operator estimate :

$$\widehat{\mathcal{F}}_{\theta}^{X} := \frac{1}{(2\pi)^{N}} \sum_{\|\mathbf{h}\| \le \mathbf{q}} w(\mathbf{h}/\mathbf{q}) \widehat{C}_{\mathbf{h}} e^{-i\mathbf{h}^{\top}\theta}$$
(6)

 \widehat{C}_{h} the sample autocovariance operators, w(.) a weight function

$$\widehat{C}_{\mathbf{h}} := \frac{1}{n} \sum_{\mathbf{s} \in M_{\mathbf{h},\mathbf{n}}} \left(X_{\mathbf{s}+\mathbf{h}} - \bar{X} \right) \otimes \left(X_{\mathbf{s}} - \bar{X} \right)$$
(7)

with $M_{\mathbf{h},\mathbf{n}} = {\mathbf{s} : 1 \leq \mathbf{s}_i, \mathbf{s}_i + h_i \leq n_i, \forall 1 \leq i \leq N}$. If the set $M_{\mathbf{h},\mathbf{n}}$ is empty, $\widehat{C}_{\mathbf{h}} = 0$, $n = \prod_{i=1}^{N} n_i$.

$$X_{\mathbf{s}}(t) pprox \sum_{m=1}^{K} \hat{X}_{m,\mathbf{s}}(t), \quad t \in \mathcal{T},$$

 $\hat{X}_{m,\mathbf{s}}(t) \coloneqq \sum_{\|\mathbf{l}\|_{\infty} \leq L} \hat{\xi}_{m,\mathbf{s}+\mathbf{l}} \hat{\phi}_{m,\mathbf{l}},$
assuming $1 + 2L \leq \mathbf{s}_i \leq n_i - 2L$ for $1 \leq i \leq N$.

Daily temperature data (year 2001)

Correlations

Space-time filters

Spectral Principal Component Analysis of Multivariate Spatial Functional Data

Let the covariance operator $C_j := \mathbb{E}[(X^{(j)} - \mu^j) \otimes (X^{(j)} - \mu^j)]$ of X^j

$$(C_j f)(t) = \int_{\mathcal{T}_j} c_j(s,t) f(s) ds, \quad f \in \mathcal{L}^2(\mathcal{T}_j), \ t \in \mathcal{T}_j$$
 (8)

Weakly stationary functional process

(i) $\mathbb{E}(X_{\mathbf{s}}^{(j)}(t)) = \mathbb{E}(X_{\mathbf{0}}^{(j)}(t)) = \mu^{j}(t), t \in \mathcal{T}_{j}$ with **0** being the zero vector in \mathbb{R}^{N} (ii) for all $\mathbf{s}, \mathbf{h} \in \mathbf{D}$, and $t, s \in \mathcal{T}_{j}$; $c_{j,\mathbf{h}}(t,s) := Cov\left(X_{\mathbf{h}}^{j}(t), X_{\mathbf{0}}^{j}(s)\right) = Cov\left(X_{\mathbf{s}+\mathbf{h}}^{j}(t), X_{\mathbf{s}}^{j}(s)\right)$

Spectral Principal Component Analysis of Multivariate Spatial Functional Data

Let $\mathcal{F}_{\theta}^{\chi^{(j)}}$ be the spectral density operator of $X_{\rm s}^{(j)}$ with the following kernel :

$$f_{ heta}^{X^{(j)}}(t,s) := rac{1}{(2\pi)^N} \sum_{\mathbf{h} \in \mathbb{Z}^N} c_{j,\mathbf{h}}(t,s) \exp(-i\mathbf{h}^{ op} \theta)$$
 (9)

$$\mathcal{F}_{\theta}^{\chi(j)} = \sum_{m \ge 1} \lambda_{j,m}(\theta) \varphi_{j,m}(\theta) \otimes \varphi_{j,m}(\theta)$$
(10)

where $\lambda_{j,m}(\theta) \geq \lambda_{j,m}(\theta) \geq ... \geq 0$

$$\varphi_{j,m}(t|\theta) = \sum_{\mathbf{l}\in\mathbb{Z}^N} \phi_{m,\mathbf{l}}^{(j)}(t) \exp(-i\mathbf{l}^{\top}\theta).$$
(11)

The functional principal component score is defined as :

$$\xi_{m,\mathbf{s}}^{(j)} := \sum_{\mathbf{l}\in\mathbf{D}} \left\langle X_{\mathbf{s}-\mathbf{l}}^{(j)}, \phi_{m,\mathbf{l}}^{(j)} \right\rangle \tag{12}$$

Spectral Principal Component Analysis of Multivariate Spatial Functional Data (SMFPCA)

The Karhunen-Loève spatial expansion of $X_{s}^{(j)}$ is given by :

$$X_{\mathbf{s}}^{(j)}(t) = \sum_{m=1}^{\infty} X_{m,\mathbf{s}}^{(j)}(t) \quad t \in \mathcal{T}_j \text{ with}$$

$$\tag{13}$$

$$X_{m,\mathbf{s}}^{(j)}(t) := \sum_{\mathbf{l} \in \mathbb{Z}^N} \xi_{m,\mathbf{s}+\mathbf{l}}^{(j)} \phi_{m,\mathbf{l}}^{(j)}(t)$$

The spectral density operator is estimated as :

$$\widehat{\mathcal{F}}_{\theta}^{\chi^{(j)}} := \frac{1}{(2\pi)^N} \sum_{\|\mathbf{h}\| \le \mathbf{q}} w(\mathbf{h}/\mathbf{q}) \widehat{C}_{j,\mathbf{h}} e^{-i\mathbf{h}^\top \theta}$$
(14)

 $\widehat{C}_{j,h}$ the sample autocovariance operators.

SMFPCA Methodology

The multivariate eigenfunctions are :

$$\hat{\psi}_{m,\mathbf{s}}^{(j)}(t_j) \approx \sum_{l=1}^{M_j} \left[\hat{c}_m \right]_l^{(j)} \hat{\phi}_{l,\mathbf{s}}^{(j)}(t_j) \tag{15}$$

$$t_j \in \mathcal{T}_j, \mathbf{s} \in \mathbf{D}, \ m = 1, ..., M_+$$

Multivariate PCA scores

$$\hat{\rho}_{m,\mathbf{s}} = \sum_{j=1}^{p} \sum_{l=1}^{M_j} \left[\hat{c}_m \right]_l^{(j)} \hat{\xi}_{l,\mathbf{s}}^{(j)}$$
(16)

$$X_{\mathbf{s}}^{(j)}(t_j) pprox \sum_{m=1}^{M_j} \hat{X}_{m,\mathbf{s}}^{(j)}(t_j), \quad t_j \in \mathcal{T}_j, \text{ with } \hat{X}_{m,\mathbf{s}}^{(j)}(t_j) := \sum_{\|\mathbf{l}\|_{\infty} \le L} \hat{\xi}_{m,\mathbf{s}+\mathbf{l}}^{(j)} \hat{\phi}_{m,\mathbf{l}}^{(j)}$$
 (17)

Spatial MFPCA compare to MFPCA (Happ and Greven (2018))

$$\mathsf{NMSE}(M_{j}) = \frac{\sum_{s \in \mathbf{D}_{n}} \left\| X_{s}^{(j)} - \sum_{m=1}^{M_{j}} \widehat{X}_{m,s}^{(j)} \right\|^{2}}{\sum_{s \in \mathbf{D}_{n}} \left\| X_{s}^{(j)} \right\|^{2}}$$
(18)

 $D_n = \{s \in \mathbb{Z}^N : 1 \le s_i \le n_i \text{ for all } 1 \le i \le n\}$ represents a region where the mean is calculated

$$\text{NMSE}_{\text{spat}}^{*}(M_{j}) = 1 - \frac{\sum_{m \leq M_{j}} \int_{[-\pi,\pi]^{N}} \hat{\lambda}_{j,m}(\theta) d\theta}{\sum_{m \geq 1} \int_{[-\pi,\pi]^{N}} \hat{\lambda}_{j,m}(\theta) d\theta}$$
(19)

Spatial MFPCA compare to MFPCA (Happ and Greven (2018))

1. NMSE and $\rm NMSE^*$ results obtained by SMFPCA and MFPCA with 2 functional time series (2000, 2001).

Cumulative PCA	PC1		PC2		PC3	
Spatial consideration	Spatial	Ordinary	Spatial	Ordinary	Spatial	Ordinary
NMSE 2000	0.4796	0.5416	0.3396	0.5147	0.2103	0.3749
NMSE* 2000	0.4356	0.5156	0.2596	0.3342	0.1664	0.2695
NMSE 2001	0.5178	0.6016	0.3665	0.4121	0.3578	0.3627
NMSE* 2001	0.5061	0.6021	0.2709	0.3788	0.1678	0.2686

2. NMSE and $\rm NMSE^*$ results obtained by SMFPCA and MFPCA considering 3 series (1996, 1998, 1999)

Cumulative PCA	PC1		PC2		PC3	
Spatial consideration	Spatial	Ordinary	Spatial	Ordinary	Spatial	Ordinary
NMSE 1996	0.5090	0.6364	0.5069	0.5215	0.3223	0.5029
NMSE [*] 1996	0.4523	0.5358	0.2786	0.3772	0.1794	0.2851
NMSE 1998	0.6980	0.7111	0.3418	0.5812	0.3026	0.5069
NMSE [*] 1998	0.4476	0.5791	0.2624	0.3855	0.1640	0.2837
NMSE 1999	0.4377	0.4762	0.3053	0.3941	0.2758	0.3237
NMSE [*] 1999	0.4254	0.4744	0.2739	0.3520	0.1889	0.2778

Functional Kriging : Prediction of the whole temperature curve at a given station

Let us suppose an isotropic variogram : $\gamma(\mathbf{h}) = \gamma(\|\mathbf{h}\|)$

The trace-variogram estimate is

$$\hat{\gamma}_n(\mathbf{h}) = \frac{1}{2\#N(\mathbf{h})} \sum_{\mathbf{s}_j, \mathbf{s}_j \in N(\mathbf{h})} \int_{\mathcal{T}} (X_{\mathbf{s}_i}(t) - X_{\mathbf{s}_j}(t))^2 dt,$$

where $N(\mathbf{h}) = \{(\mathbf{s}_i, \mathbf{s}_j) : h - \Delta \le ||\mathbf{s}_i - \mathbf{s}_j|| \le \mathbf{h} + \Delta; \quad i, j = 1, \dots, n\}.$

Ordinary functional Kriging

$$\hat{X}_{s_0} = \sum_{i=1}^n \lambda_i X_{s_i}$$

 $E(\hat{X}_{s_0}) = E(X_{s_0})$ and $E \int_{\mathcal{T}} (\hat{X}_{s_0}(t) - X_{s_0}(t))^2 dt$ minimum

The $(\lambda_i)_{i=1,n}$ are solutions of the system (*m* is a Lagrange multiplier)

$$\begin{pmatrix} 0 & \gamma(\|\mathbf{s}_1 - \mathbf{s}_2\|) & \dots & \gamma(\|\mathbf{s}_1 - \mathbf{s}_n\|) & 1 \\ \gamma(\|\mathbf{s}_1 - \mathbf{s}_2\|) & 0 & \dots & \gamma(\|\mathbf{s}_2 - \mathbf{s}_n\|) & 1 \\ & \dots & \dots & \dots & \dots & \dots & \dots \\ \gamma(\|\mathbf{s}_1 - \mathbf{s}_n\|) & \gamma(\|\mathbf{s}_2 - \mathbf{s}_n\|) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \dots \\ \lambda_n \\ m \end{pmatrix} = \begin{pmatrix} \gamma(\|\mathbf{s}_0 - \mathbf{s}_1\|) \\ \gamma(\|\mathbf{s}_0 - \mathbf{s}_2\|) \\ \dots \\ \gamma(\|\mathbf{s}_0 - \mathbf{s}_n\|) \\ \dots \\ \gamma(\|\mathbf{s}_0 - \mathbf{s}_n\|) \end{pmatrix}$$

Kriging Variance

$$\sigma_{OK}^{2}(\mathbf{s}_{0}) = E((\hat{X}_{\mathbf{s}_{0}} - X_{\mathbf{s}_{0}})^{2}) = m + \sum_{i=1}^{n} \lambda_{i}\gamma(\|\mathbf{s}_{i} - \mathbf{s}_{0}\|)$$

Other dependencies

• Generalized functional dynamic PCA : (Khoo et al. 2024).

Thank you for listening