On computing upper bounds for nonlinear min problems involving disjunctive constraints: applications

Sonia Cafieri ENAC - École Nationale de l'Aviation Civile Université de Toulouse, France

Journées de statistique et optimisation en Occitanie

2-4 avril 2025

ヘロト ヘポト ヘヨト ヘヨト

Focus on **nonlinear constrained problems** having a **strucure** often arising in applications

E ► < E ►

Sonia Cafieri (ENAC)

Focus on **nonlinear constrained problems** having a **strucure** often arising in applications

What do the problems below have in common?

covering a rectangle by circles whose radius is to minimize

keeping a safety separation between pairs of aircraft

• • • • • • • • •

∃ → < ∃</p>

Focus on **nonlinear constrained problems** having a **strucure** often arising in applications

What do the problems below have in common?

covering a rectangle by circles whose radius is to minimize

keeping a safety separation between pairs of aircraft

mathematical optimization formulation involving disjunctive constraints \rightarrow the *only* combinatorial aspect

Sonia Cafieri (ENAC)

On computing upper bounds for nonlinear min problems involving disjunctive constraints:

3 D

Focus on **nonlinear problems** whose *only* combinatorial aspect comes from **disjunctive constraints**

Constraints of the form: $t(x) > 0 \Rightarrow f(x) \ge 0$ logically equivalent to $t(x) \le 0$ or $f(x) \ge 0$

- common in mathematical optimization models
- typically modelled by introducing auxiliary binary variables

(人間) トイヨン イヨン

Focus on **nonlinear problems** whose *only* combinatorial aspect comes from **disjunctive constraints**

Constraints of the form: $t(x) > 0 \Rightarrow f(x) \ge 0$ logically equivalent to $t(x) \le 0$ or $f(x) \ge 0$

- common in mathematical optimization models
- typically modelled by introducing auxiliary binary variables

In this talk: Approach relying on the **continuous quadrant penalty formulation of disjunctive constraints** as a continuous-optimization alternative to the mixed-integer formulations

continuous nonconvex formulation yields an efficient computation of upper bounds to be used in B&B-based approaches

Continuous penalty-based formulation of logical constraints

2 An application from discrete geometry

3 An application from Air Traffic Management

Conclusions and perspectives

イロト イポト イヨト イヨト

Sonia Cafieri (ENAC)

Continuous penalty-based formulation of logical constraints

2 An application from discrete geometry

An application from Air Traffic Management

4 Conclusions and perspectives

イロト イポト イヨト イヨト

Sonia Cafieri (ENAC)

Logical constraints: Typical formulations

$$t(x) \le 0 \quad \text{or} \quad f(x) \ge 0$$

introducing a binary variable *z*:

Big-M formulation

Complementary formulation

$$\begin{array}{rcl} t(x) &\leq & M_1 z & & t(x)(1-z) &\leq & 0, \\ -f(x) &\leq & M_2(1-z) & & f(x) \, z \; \geq \; 0, \\ z &\in \; \{0,1\} & & z \; \in \; \{0,1\} \end{array}$$

where M_1 and M_2 large enough so that:

 $t(x) \le M_1$ and $-f(x) \le M_2$

for all desirable solutions x

```
\Rightarrow potential numerical instability/inefficiency
```


A continuous-optimization alternative

Introduced in:

S.C., A.R. Conn, M. Mongeau, *The continuous quadrant penalty formulation of logical constraints*. Open Journal on Mathematical Optimization, 2023

Using penalty functions to model logical constraints

Intuition: guide the search of a continuous-optimization method towards the parts of the domain where the logical constraint is satisfied

4 **A b b b b b**

Reformulating a logical constraint

Let $x \in \mathbb{R}^n$, and consider $(t(x), f(x)) \in \mathbb{R}^2$ (in the sequel, we drop the dependency upon *x*)

Requiring $t \le 0$ or $f \ge 0$

is equivalent to

requiring

$$p := (t, f) \in \mathbb{R}^2 \setminus S$$

where $S := \{(t, f) : t > 0 \text{ and } f < 0\}$ (the open fourth quadrant is forbidden)

What type of function?

To guide the search so as p := (t, f) is driven outwards from S (= the 4th quadrant), we would like a function $g : p \in \mathbb{R}^2 \to \mathbb{R}$ satisfying:

- a) g(p) = 0, if $p \in \mathbb{R}^2 \setminus S$ and g(p) > 0, if $p \in S$
- b) g leans outwards S

i.e., if for any given point $\bar{p} \in S$, and for any descent direction \bar{d} for g at \bar{p} , there exists a threshold step size $\bar{\gamma} > 0$ such that $\bar{p} + \gamma \bar{d} \notin S$, for all $\gamma \ge \bar{\gamma}$ [a descent method minimizing g converges towards a point in $\mathbb{R}^2 \setminus S$]

- c) g is continuous
- d) g is smooth

What type of function?

To guide the search so as p := (t, f) is driven outwards from S (= the 4th quadrant), we would like a function $g : p \in \mathbb{R}^2 \to \mathbb{R}$ satisfying:

- a) g(p) = 0, if $p \in \mathbb{R}^2 \setminus S$ and g(p) > 0, if $p \in S$
- b) g leans outwards S

i.e., if for any given point $\bar{p} \in S$, and for any descent direction \bar{d} for g at \bar{p} , there exists a threshold step size $\bar{\gamma} > 0$ such that $\bar{p} + \gamma \bar{d} \notin S$, for all $\gamma \ge \bar{\gamma}$ [a descent method minimizing g converges towards a point in $\mathbb{R}^2 \setminus S$]

- c) g is continuous
- d) g is smooth

Why this function? Search for a penalty function g

Consider some forbidden set: $\emptyset \neq S \subsetneq \mathbb{R}^n$.

A linear function?

Proposition (S.C., A.R.Conn, M.Mongeau, OJMO 2023)

Let $S \subset \mathbb{R}^n$ be such that (the desirable set) $\mathbb{R}^n \setminus S$ is not convex. Then, no function $g : \mathbb{R}^n \to \mathbb{R}$ s.t. g(p) = 0, if $p \in \mathbb{R}^n \setminus S$, and g(p) > 0, if $p \in S$, can be convex

 \implies g cannot be linear (was rather obvious)

A piecewise-linear function?

Proposition (S.C., A.R.Conn, M.Mongeau, OJMO 2023)

Unless S is a half-space, \nexists a continuous **two-piece** piecewise-linear function $g : \mathbb{R}^n \to \mathbb{R}$ s.t. g(p) = 0, if $p \in \mathbb{R}^n \setminus S$, and g(p) > 0, if $p \in S$.

ENA

Back to our context: n = 2 and S = the open 4th quadrant.

Proposition (S.C., A.R.Conn, M.Mongeau, OJMO 2023)

There exists a continuous piecewise-linear function $g : \mathbb{R}^2 \to \mathbb{R}$ s.t. g(p) = 0, if $p \in \mathbb{R}^2 \setminus S$, and g(p) > 0, if $p \in S$, with three pieces:

where $\alpha > 0$ is any given positive (slope) parameter. Moreover, up to a multiplicative constant, and up to the arbitrary value of α , this function is **unique**.

changing the units of t and f (scaling) \leftrightarrow changing the slope $\alpha \implies \text{set } \alpha = 1$

A smooth piecewise-quadratic penalty function

Let $S \subseteq \mathbb{R}^2$ be the open fourth quadrant.

Proposition (S.C., A.R.Conn, M.Mongeau, OJMO 2023)

There exists a penalty function, $g : \mathbb{R}^2 \to \mathbb{R}$ *, that is piecewise quadratic with exactly 4 pieces<i>, satisfying:*

a) g(p) = 0, if $p \in \mathbb{R}^2 \setminus S$ and g(p) > 0, if $p \in S$

- b) g leans outwards S
- c) g is continuous
- d) g is smooth

A family of such functions is:

$$g_{\beta}(t,f) = \begin{cases} 0 & \text{if } t \leq 0 \text{ or } f \geq 0 \\ t^{2} & \text{if } 0 < t \leq -\frac{f}{\beta} \\ \frac{1}{1-\beta^{2}}(t^{2}+2\beta tf+f^{2}) & \text{if } -\frac{f}{\beta} < t < -\beta f \\ f^{2} & \text{if } -\frac{t}{\beta} \leq f < 0 \end{cases}$$

for $\beta \in \mathbb{R}$, $\beta > 1$.

Restrictions of g_{β} when $\beta = 3$

э

Sonia Cafieri (ENAC)

Restrictions of g_{β} when $\beta = 3$

→ < Ξ →</p>

Sonia Cafieri (ENAC)

Restrictions of g_{β} when $\beta = 3$

 g_{β} when $\beta = 3$

Sonia Cafieri (ENAC)

 g_{β} when $\beta = 3$

$$g_{\beta}(t,f) = \begin{cases} 0 & \text{if } t \leq 0 \text{ or } f \geq 0 \\ t^2 & \text{if } 0 < t \leq -\frac{f}{3} \\ -\frac{1}{8}(t^2 + 6 tf + f^2) & \text{if } -\frac{f}{3} < t < -3f \\ f^2 & \text{if } -\frac{t}{3} \leq f < 0. \end{cases}$$

Sonia Cafieri (ENAC)

On computing upper bounds for nonlinear min problems involving disjunctive constraints:

ENAC

 g_{β} allows using state-of-the-art solvers for nonlinear continuous optimization even in presence of disjunctions

- g_{β} non convex function \Rightarrow **local** optima
- possible convergence to a local min violating the (penalized) logical constraints (*local infeasibility*)

But good properties \rightarrow yields good-quality **upper bounds**

(to be used in Branch-and-Bound)

< ロト (同) (三) (三)

Continuous penalty-based formulation of logical constraints

2 An application from discrete geometry

3 An application from Air Traffic Management

4 Conclusions and perspectives

イロト イポト イヨト イヨト

Sonia Cafieri (ENAC)

Covering problem

How can a **rectangle** be covered by exactly n = 6 **identical circles**, minimizing the radius of the circles?

Melissen and Schuur's conjecture (2000): circle configurations

Literature: n = 6 circles

- a = side length of the rectangle (the other side length is 1)
- r(a) = minimum radius of 6 identical circles covering the rectangle

Analytical expressions of r(a) known for configurations c), d), e).

Recently closed cases in:

S. Cafieri, P. Hansen, F. Messine, *Global exact optimization for covering a rectangle with 6 circles.* Journal of Global Optimization, 83, 2022.

- configuration b): *a* ∈ [2.923, 3.118] expression of *r*(*a*)
- configuration a): a ∈ [1, 2.923]
 MINLP formulation
 → numerical (globally) optimal solutions

Decision variables

- r, radius of the circles
- (x_i, y_i), ∀i = 1,...,6,
 coordinates of the centers of circles C_i in an Euclidean space

r, to be minimized

Constraints

ensuring that the circles are placed in such a way that the rectangle is entirely covered

- Covering the rectangle vertices
- Occurring the rectangle sides
- Overing the rectangle interior

ヨト・モート

Configuration a): $a \in [1, 2.923]$

$$\begin{array}{rcl}
\min_{x_{i_{y}y_{i_{r}}r}} & r \\
s.t. \\
(x_{1} - 0)^{2} + (y_{1} - 1)^{2} &\leq r^{2} \\
(x_{4} - 0)^{2} + (y_{4} - 0)^{2} &\leq r^{2} \\
(x_{6} - a)^{2} + (y_{6} - 0)^{2} &\leq r^{2} \\
(x_{6} - a)^{2} + (y_{6} - 0)^{2} &\leq r^{2} \\
(x_{3} - a)^{2} + (y_{3} - 1)^{2} &\leq r^{2} \\
y_{1} - \sqrt{r^{2} - x_{1}^{2}} &\leq y_{4} + \sqrt{r^{2} - x_{4}^{2}} \\
y_{3} - \sqrt{r^{2} - (1 - x_{3})^{2}} &\leq y_{6} + \sqrt{r^{2} - (1 - x_{6})^{2}} \\
x_{2} - \sqrt{r^{2} - (1 - y_{2})^{2}} &\leq x_{1} + \sqrt{r^{2} - (1 - y_{1})^{2}} \\
x_{3} - \sqrt{r^{2} - (1 - y_{3})^{2}} &\leq x_{2} + \sqrt{r^{2} - (1 - y_{2})^{2}} \\
x_{5} - \sqrt{r^{2} - y_{5}^{2}} &\leq x_{4} + \sqrt{r^{2} - y_{4}^{2}} \\
x_{6} - \sqrt{r^{2} - y_{6}^{2}} &\leq x_{5} + \sqrt{r^{2} - y_{5}^{2}}
\end{array}$$

On computing upper bounds for nonlinear min problems involving disjunctive constraints:

э

イロト イポト イヨト イヨト

Configuration a): $a \in [1, 2.923]$

$$\begin{array}{rcl}
\min_{x_{i_{y}y_{i_{r}}r}} & r \\
s.t. \\
(x_{1} - 0)^{2} + (y_{1} - 1)^{2} &\leq r^{2} \\
(x_{4} - 0)^{2} + (y_{4} - 0)^{2} &\leq r^{2} \\
(x_{6} - a)^{2} + (y_{6} - 0)^{2} &\leq r^{2} \\
(x_{6} - a)^{2} + (y_{6} - 0)^{2} &\leq r^{2} \\
(x_{3} - a)^{2} + (y_{3} - 1)^{2} &\leq r^{2} \\
y_{1} - \sqrt{r^{2} - x_{1}^{2}} &\leq y_{4} + \sqrt{r^{2} - x_{4}^{2}} \\
y_{3} - \sqrt{r^{2} - (1 - x_{3})^{2}} &\leq y_{6} + \sqrt{r^{2} - (1 - x_{6})^{2}} \\
x_{2} - \sqrt{r^{2} - (1 - y_{2})^{2}} &\leq x_{1} + \sqrt{r^{2} - (1 - y_{1})^{2}} \\
x_{3} - \sqrt{r^{2} - (1 - y_{3})^{2}} &\leq x_{2} + \sqrt{r^{2} - (1 - y_{2})^{2}} \\
x_{5} - \sqrt{r^{2} - y_{5}^{2}} &\leq x_{4} + \sqrt{r^{2} - y_{4}^{2}} \\
x_{6} - \sqrt{r^{2} - y_{6}^{2}} &\leq x_{5} + \sqrt{r^{2} - y_{5}^{2}}
\end{array}$$

On computing upper bounds for nonlinear min problems involving disjunctive constraints:

э

イロト イポト イヨト イヨト

$$\begin{array}{lll} (x_{14} - x_1)^2 + (y_{14} - y_1)^2 &=& r^2 \\ (x_{14} - x_4)^2 + (y_{14} - y_4)^2 &=& r^2 \\ (x_{36} - x_3)^2 + (y_{36} - y_3)^2 &=& r^2 \\ (x_{36} - x_6)^2 + (y_{36} - y_6)^2 &=& r^2 \\ (x_{25}^{[1]} - x_2)^2 + (y_{25}^{[1]} - y_2)^2 &=& r^2 \\ (x_{25}^{[2]} - x_2)^2 + (y_{25}^{[1]} - y_2)^2 &=& r^2 \\ (x_{25}^{[2]} - x_2)^2 + (y_{25}^{[2]} - y_2)^2 &=& r^2 \\ (x_{25}^{[2]} - x_5)^2 + (y_{25}^{[2]} - y_5)^2 &=& r^2 \\ z_{14} \left((x_{14} - x_2)^2 + (y_{14} - y_2)^2 - r^2 \right) &\leq 0 \\ (1 - z_{14}) \left((x_{14} - x_5)^2 + (y_{25}^{[1]} - y_1)^2 - r^2 \right) &\leq 0 \\ z_{25}^{[1]} \left((x_{25}^{[1]} - x_1)^2 + (y_{25}^{[1]} - y_4)^2 - r^2 \right) &\leq 0 \\ z_{25}^{[2]} \left((x_{25}^{[2]} - x_3)^2 + (y_{25}^{[2]} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{25}^{[2]} \left((x_{25}^{[2]} - x_3)^2 + (y_{25}^{[2]} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{25}^{[2]} \left((x_{25}^{[2]} - x_3)^2 + (y_{25}^{[2]} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{25}^{[2]} \left((x_{25}^{[2]} - x_3)^2 + (y_{25}^{[2]} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{36} \left((x_{36} - x_2)^2 + (y_{36} - y_2)^2 - r^2 \right) &\leq 0 \\ (1 - z_{36}) \left((x_{36} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ 0 \leq r \leq 1, \quad 0 \leq x_i \leq a, \quad 0 \leq y_i \leq 1, \qquad z_{jk} \in \{0, 1\} \end{array}$$

covering the interior of the rectangle:

- *intersection points* (*x_{jk}*, *y_{jk}*) *of two circles C_j*, *C_k*
- disjunctions:
 (x_{jk}, y_{jk}) have to belong to one of the neighbor circles

イロト イポト イヨト イヨト

$$\begin{array}{lll} (x_{14} - x_1)^2 + (y_{14} - y_1)^2 &=& r^2 \\ (x_{14} - x_4)^2 + (y_{14} - y_4)^2 &=& r^2 \\ (x_{36} - x_3)^2 + (y_{36} - y_3)^2 &=& r^2 \\ (x_{36} - x_6)^2 + (y_{36} - y_6)^2 &=& r^2 \\ (x_{15}^{[1]} - x_2)^2 + (y_{15}^{[1]} - y_2)^2 &=& r^2 \\ (x_{15}^{[2]} - x_5)^2 + (y_{25}^{[2]} - y_5)^2 &=& r^2 \\ (x_{25}^{[2]} - x_2)^2 + (y_{25}^{[2]} - y_2)^2 &=& r^2 \\ (x_{25}^{[2]} - x_5)^2 + (y_{25}^{[2]} - y_5)^2 &=& r^2 \\ z_{14} \left((x_{14} - x_2)^2 + (y_{14} - y_2)^2 - r^2 \right) &\leq 0 \\ (1 - z_{14}) \left((x_{14} - x_5)^2 + (y_{14}^{[1]} - y_1)^2 - r^2 \right) &\leq 0 \\ z_{15}^{[1]} \left((x_{25}^{[1]} - x_1)^2 + (y_{25}^{[1]} - y_1)^2 - r^2 \right) &\leq 0 \\ z_{125}^{[2]} \left((x_{25}^{[2]} - x_3)^2 + (y_{25}^{[2]} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{125}^{[2]} \left((x_{25}^{[2]} - x_3)^2 + (y_{25}^{[2]} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{15}^{[2]} \left((x_{25}^{[2]} - x_6)^2 + (y_{25}^{[2]} - y_6)^2 - r^2 \right) &\leq 0 \\ z_{15}^{[2]} \left((x_{25}^{[2]} - x_6)^2 + (y_{25}^{[2]} - y_6)^2 - r^2 \right) &\leq 0 \\ z_{15}^{[2]} \left((x_{25}^{[2]} - x_5)^2 + (y_{36} - y_2)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{36} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{36} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{36} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{26} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{36} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{26} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{26} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16} - x_5)^2 + (y_{16} - y_5)^2 - r^2 \right) &\leq 0 \\ z_{16} \left((x_{16$$

covering the interior of the rectangle:

- intersection points (x_{jk}, y_{jk}) of two circles C_i, C_k
- disjunctions: (x_{ik}, y_{ik}) have to belong to one of the neighbor circles

Example: (x_{14}, y_{14}) must belong to C_2 or C_5

0

0

covering the interior of the rectangle:

- *intersection points* (*x_{jk}*, *y_{jk}*) *of two circles C_j*, *C_k*
- disjunctions:
 (x_{jk}, y_{jk}) have to belong to one of the neighbor circles

Example: (x_{14}, y_{14}) must belong to C_2 or C_5

$$\begin{array}{lll} (x_{14} - x_1)^2 + (y_{14} - y_1)^2 &= r^2 \\ (x_{14} - x_4)^2 + (y_{14} - y_4)^2 &= r^2 \\ (x_{36} - x_3)^2 + (y_{36} - y_3)^2 &= r^2 \\ (x_{36} - x_6)^2 + (y_{36} - y_6)^2 &= r^2 \\ (x_{15}^{11} - x_2)^2 + (y_{15}^{11} - y_2)^2 &= r^2 \\ (x_{25}^{11} - x_5)^2 + (y_{25}^{11} - y_2)^2 &= r^2 \\ (x_{25}^{12} - x_5)^2 + (y_{25}^{11} - y_2)^2 &= r^2 \\ (x_{25}^{12} - x_5)^2 + (y_{25}^{12} - y_5)^2 &= r^2 \\ z_{14} \left((x_{14} - x_2)^2 + (y_{14} - y_2)^2 - r^2 \right) &\leq 0 \\ (1 - z_{14}) \left((x_{14} - x_5)^2 + (y_{14} - y_{25})^2 - r^2 \right) &\leq 0 \\ z_{25}^{11} \left((x_{25}^{11} - x_1)^2 + (y_{25}^{11} - y_1)^2 - r^2 \right) &\leq 0 \\ (1 - z_{25}^{11}) \left((x_{25}^{11} - x_4)^2 + (y_{25}^{11} - y_4)^2 - r^2 \right) &\leq 0 \\ z_{25}^{22} \left((x_{25}^{12} - x_3)^2 + (y_{25}^{21} - y_3)^2 - r^2 \right) &\leq 0 \\ z_{25}^{12} \left((x_{25}^{12} - x_3)^2 + (y_{25}^{12} - y_3)^2 - r^2 \right) &\leq 0 \\ (1 - z_{25}^{12}) \left((x_{25}^{12} - x_6)^2 + (y_{25}^{12} - y_6)^2 - r^2 \right) &\leq 0 \\ z_{36} \left((x_{36} - x_2)^2 + (y_{36} - y_2)^2 - r^2 \right) &\leq 0 \\ (1 - z_{36}) \left((x_{36} - x_5)^2 + (y_{36} - y_5)^2 - r^2 \right) &\leq 0 \\ 0 \leq r \leq 1, \quad 0 \leq x_i \leq a, \quad 0 \leq y_i \leq 1, \quad z_{ik} \in \{0, 1\} \end{array}$$

covering the interior of the rectangle:

- intersection points (x_{jk}, y_{jk}) of two circles C_j, C_k
- disjunctions:
 (x_{jk}, y_{jk}) have to belong to one of the neighbor circles

Example: (x_{14}, y_{14}) must belong to C_2 or C_5

Formulation based on the penalty function g_β

disjunctions

reformulated introducing:

Changing the objective to:

AMPL model implementation, MINLP solver: COUENNE 0.5, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

_			
	data	<i>r</i> *	
	a		NLP reformulation with g_{β}^1 , g_{β}^2 , g_{β}^3 , g_{β}^4
	1.0	0.29873	solved by IPOPT
	1.1	0.30808	\implies locally optimal solutions
	1.2	0.31803	Time (s) < 0.03 for all instances
	1.3	0.32853	Time $(3) < 0.05$ for all instances
	1.4	0.33954	
	1.5	0.35099	
	1.6	0.36287	
	1.7	0.37512	
	1.8	0.38771	
	1.9	0.40060	
	2.0	0.41377	Example of solution: $a = 1.4$
	2.1	0.42720	
	2.2	0.44085	
	2.3	0.45471	
	2.4	0.46876	0.4
	2.5	0.48298	$0.2 \left(+C_{1} \left(+C_{5} \left(+C_{5} \right) +C_{5} \right) \right)$
	2.6	0.49736	
	2.7	0.51189	
	2.8	0.52654	
	2.9	0.54132	< □ > < @ > < E > < E > E のQ(

Sonia Cafieri (ENAC)

AMPL model implementation, MINLP solver: COUENNE 0.5, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

_			
	data	<i>r</i> *	
	a		NLP reformulation with g_{β}^1 , g_{β}^2 , g_{β}^3 , g_{β}^4
	1.0	0.29873	solved by IPOPT
	1.1	0.30808	\implies locally optimal solutions
	1.2	0.31803	Time (s) < 0.03 for all instances
	1.3	0.32853	Time $(3) < 0.05$ for all instances
	1.4	0.33954	
	1.5	0.35099	
	1.6	0.36287	
	1.7	0.37512	
	1.8	0.38771	
	1.9	0.40060	
	2.0	0.41377	Example of solution: $a = 1.4$
	2.1	0.42720	
	2.2	0.44085	
	2.3	0.45471	
	2.4	0.46876	0.4
	2.5	0.48298	$0.2 \left(+C_{1} \left(+C_{5} \left(+C_{5} \right) +C_{5} \right) \right)$
	2.6	0.49736	
	2.7	0.51189	
	2.8	0.52654	
	2.9	0.54132	< □ > < @ > < E > < E > E のQ(

Sonia Cafieri (ENAC)

AMPL model implementation, MINLP solver: COUENNE 0.5, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

data	<i>r</i> *	MINL	Р
а		Time(s)	nodes
1.0	0.29873	1.01	12
1.1	0.30808	1.05	12
1.2	0.31803	1.06	14
1.3	0.32853	0.79	8
1.4	0.33954	0.76	6
1.5	0.35099	0.77	8
1.6	0.36287	0.73	6
1.7	0.37512	0.92	30
1.8	0.38771	0.85	26
1.9	0.40060	0.84	24
2.0	0.41377	2.11	664
2.1	0.42720	0.88	86
2.2	0.44085	2.65	908
2.3	0.45471	1.62	482
2.4	0.46876	0.64	6
2.5	0.48298	6.63	3170
2.6	0.49736	9.65	4490
2.7	0.51189	0.79	8
2.8	0.52654	1.00	30
2.9	0.54132	40.9	19970

NLP reformulation with g_{β}^{1} , g_{β}^{2} , g_{β}^{3} , g_{β}^{3} , g_{β}^{4} solved by IPOPT \implies locally optimal solutions

Time (s) < 0.03 for all instances

Sonia Cafieri (ENAC)

AMPL model implementation, MINLP solver: COUENNE 0.5, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

data	<i>r</i> *	MINL	MINLP N		UB-NLP	
a		Time(s)	nodes	Time(s)	nodes	NLP reformulation with g_{β}^1 , g_{β}^2 , g_{β}^3 , g_{β}^4
1.0	0.29873	1.01	12	0.89	10	solved by IPOPT
1.1	0.30808	1.05	12	1.41	18	\implies locally optimal solutions
1.2	0.31803	1.06	14	0.87	6	Time (s) < 0.03 for all instances
1.3	0.32853	0.79	8	0.86	6	
1.4	0.33954	0.76	6	0.77	6	\implies upper bound as an artificial cuton
1.5	0.35099	0.77	8	0.74	6	$10 \text{ COUENNE} \longrightarrow \text{ UB-NLP}$
1.6	0.36287	0.73	6	0.83	6	
1.7	0.37512	0.92	30	0.80	28	Note: needs setting penalty parameters
1.8	0.38771	0.85	26	0.71	6	
1.9	0.40060	0.84	24	1.29	21	
2.0	0.41377	2.11	664	0.62	6	Example of solution: $a = 1.4$
2.1	0.42720	0.88	86	0.93	58	
2.2	0.44085	2.65	908	0.75	8	
2.3	0.45471	1.62	482	1.04	90	
2.4	0.46876	0.64	6	0.92	8	
2.5	0.48298	6.63	3170	0.77	6	$0.2 + (+ C_1 () + C_3 () + C_6)$
2.6	0.49736	9.65	4490	0.95	46	
2.7	0.51189	0.79	8	0.79	6	
2.8	0.52654	1.00	30	1.02	92	
2.9	0.54132	40.9	19970	0.78	10	▲□▶★@▶★≧▶★≧▶ ≧ のの

Sonia Cafieri (ENAC)

Continuous penalty-based formulation of logical constraints

An application from discrete geometry

3 An application from Air Traffic Management

Conclusions and perspectives

イロト イポト イヨト イヨト

Sonia Cafieri (ENAC)

Aircraft conflict avoidance

- *n* aircraft, $A := \{1, 2, ..., n\}$
- straight-line segment trajectories
- Given, $\forall i \in A$:
 - initial position, $(x_i^0, y_i^0) \in \mathbb{R}^2$
 - initial velocity
 (heading angle, φ_i, and speed, v_i)

イロト イポト イヨト イヨト

<u>Aim:</u> decide changes of **heading angles** and **speeds** at t = 0to ensure pairwise aircraft separation:

 $\|\mathbf{x}_i(t) - \mathbf{x}_j(t)\| \ge d$ for all $t \ge 0$

s.t. bound constraints (feasibility problem)

$$\begin{aligned} \|\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)\| &\geq d \quad \forall t \geq 0 \qquad \Longleftrightarrow \\ f_{ij}(t) &=: \|\mathbf{v}_{ij}\|^{2} t^{2} + 2(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij}) t + (\|\mathbf{x}_{ij}^{0}\|^{2} - d^{2}) \geq 0 \quad \forall t \geq 0 \\ \text{since } \mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) &= \mathbf{x}_{ij}^{0} + \mathbf{v}_{ij}t, \\ \text{where:} \\ \mathbf{x}_{ij}^{0} &= \text{initial relative position of aircraft } i \text{ and } j \quad (= \mathbf{x}_{i}^{0} - \mathbf{x}_{j}^{0}) \\ \mathbf{v}_{ij} &= \text{relative speed of aircraft } i \text{ and } j \\ \text{strictly convex univariate quadratic function!} \\ \text{minimized at } t_{ij}^{m} &:= -\frac{(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij})}{\|\mathbf{v}_{ij}\|^{2}} \quad \text{with value } f_{ij}^{m} &:= f_{ij}(t_{ij}^{m}) \quad f \\ \text{Separation:} \quad t_{ij}^{m} &\leq 0 \quad \text{or } f_{ij}^{m} \geq 0 \end{aligned}$$

$$[S. Cafieri, N. Durand, JOGO 2014] \qquad S := \{(t, f) : t > 0 \text{ and } f_{i} \leq 0\}$$

Sonia Cafieri (ENAC)

Sonia Cafieri (ENAC)

$$\begin{aligned} \|\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)\| \geq d \quad \forall t \geq 0 \end{aligned} \iff \\ f_{ij}(t) &=: \|\mathbf{v}_{ij}\|^{2} t^{2} + 2(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij}) t + (\|\mathbf{x}_{ij}^{0}\|^{2} - d^{2}) \geq 0 \quad \forall t \geq 0 \end{aligned}$$
since $\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) = \mathbf{x}_{ij}^{0} + \mathbf{v}_{ij}t$,
where:
$$\mathbf{x}_{ij}^{0} = \text{initial relative position of aircraft } i \text{ and } j \quad (= \mathbf{x}_{i}^{0} - \mathbf{x}_{j}^{0})$$

$$\mathbf{v}_{ij} = \text{relative speed of aircraft } i \text{ and } j$$
strictly convex univariate quadratic function!
minimized at $t_{ij}^{m} := -\frac{(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij})}{\|\mathbf{v}_{ij}\|^{2}}$ with value $f_{ij}^{m} := f_{ij}(t_{ij}^{m}) \quad f$
Separation:
$$t_{ij}^{m} \leq 0 \quad \text{or} \quad f_{ij}^{m} \geq 0$$
as long as $f_{ij}(0) \geq 0$
(assume initially separated!)
$$S := \{(t, f) : t \geq 0 \text{ and } f \leq 0\}$$

Sonia Cafieri (ENAC)

$$\begin{aligned} \|\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)\| &\geq d \quad \forall t \geq 0 \qquad \Longleftrightarrow \\ f_{ij}(t) &=: \|\mathbf{v}_{ij}\|^{2} t^{2} + 2(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij}) t + (\|\mathbf{x}_{ij}^{0}\|^{2} - d^{2}) \geq 0 \quad \forall t \geq 0 \\ \text{since } \mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) &= \mathbf{x}_{ij}^{0} + \mathbf{v}_{ij}t, \\ \text{where:} \\ \mathbf{x}_{ij}^{0} &= \text{initial relative position of aircraft } i \text{ and } j \quad (= \mathbf{x}_{i}^{0} - \mathbf{x}_{j}^{0}) \\ \mathbf{v}_{ij} &= \text{relative speed of aircraft } i \text{ and } j \\ \text{strictly convex univariate quadratic function!} \\ \text{minimized at } t_{ij}^{m} &:= -\frac{(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij})}{\|\mathbf{v}_{ij}\|^{2}} \quad \text{with value } f_{ij}^{m} &:= f_{ij}(t_{ij}^{m}) \quad f \\ \text{Separation:} \quad t_{ij}^{m} &\leq 0 \quad \text{or } f_{ij}^{m} \geq 0 \end{aligned}$$

$$[S. Cafieri, N. Durand, JOGO 2014] \qquad S := \{(t, f) : t > 0 \text{ and } f \leq 0\}$$

Sonia Cafieri (ENAC)

č

On computing upper bounds for nonlinear min problems involving disjunctive constraints:

$$\begin{aligned} \|\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)\| &\geq d \quad \forall t \geq 0 \end{aligned} \iff \\ f_{ij}(t) &=: \|\mathbf{v}_{ij}\|^{2} t^{2} + 2(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij}) t + (\|\mathbf{x}_{ij}^{0}\|^{2} - d^{2}) \geq 0 \quad \forall t \geq 0 \end{aligned}$$
since $\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) &= \mathbf{x}_{ij}^{0} + \mathbf{v}_{ij}t$,
where:
$$\mathbf{x}_{ij}^{0} &= \text{initial relative position of aircraft } i \text{ and } j \quad (= \mathbf{x}_{i}^{0} - \mathbf{x}_{j}^{0})$$

$$\mathbf{v}_{ij} &= \text{relative speed of aircraft } i \text{ and } j$$
strictly convex univariate quadratic function!
minimized at $t_{ij}^{m} &:= -\frac{(\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij})}{\|\mathbf{v}_{ij}\|^{2}} \text{ with value } f_{ij}^{m} &:= f_{ij}(t_{ij}^{m}) \quad f \quad f \quad f \in S \\ \text{Separation:} \quad t_{ij}^{m} &\leq 0 \quad \text{or } f_{ij}^{m} \geq 0 \end{aligned}$

$$S := \{(t_{i}, f) : t \geq 0 \text{ and } f_{i} \leq 0\}$$

Sonia Cafieri (ENAC)

New formulations [S.C., A.R. Conn, M. Mongeau, EJOR 2023]

Deciding for each aircraft $i \in A$: • heading angle deviation $\phi_i \rightarrow \phi_i + \theta_i$ • speed deviation $v_i \rightarrow q_i v_i$ $\mathbf{v}_{ij} = \begin{pmatrix} c_i \\ cos(\phi_i + \theta_i)q_iv_i - cos(\phi_j + \theta_j)q_jv_j \\ sin(\phi_i + \theta_i)q_iv_i - sin(\phi_j + \theta_j)q_jv_j \\ sin(\phi_i + \theta_i)q_iv_i - sin(\phi_j + \theta_j)q_jv_j \end{pmatrix}$

Considering rather (reformulation to avoid trigonometric functions):

$$\omega_i := c_i q_i v_i \qquad \mathbf{v}_{ij} = \begin{pmatrix} \omega_i - \omega_j \\ \pi_i - \pi_j \end{pmatrix}, \qquad i, j \in A : i < j$$

$$\pi_i := s_i q_i v_i$$

The constraints to be satisfied are:

$$\begin{aligned} t_{ij}^{m} &\leq 0 \quad \text{or} \quad f_{ij}^{m} \geq 0 & i, j \in A : i < j \\ f_{ij}^{m} ||\mathbf{v}_{ij}||^{2} &= ||\mathbf{v}_{ij}||^{2} (||\mathbf{x}_{ij}^{0}||^{2} - d^{2}) - (\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij})^{2} & i, j \in A : i < j \\ t_{ij}^{m} ||\mathbf{v}_{ij}||^{2} &= -\mathbf{x}_{ij}^{0} \cdot \mathbf{v}_{ij} & i, j \in A : i < j \\ \mathbf{v}_{ij} &= \begin{pmatrix} \omega_{i} - \omega_{j} \\ \pi_{i} - \pi_{j} \end{pmatrix} & i, j \in A : i < j \\ \omega_{i}^{2} + \pi_{i}^{2} &= (q_{i}v_{i})^{2} & i \in A \\ \frac{q_{i}}{2} \leq q_{i} \leq \overline{q_{i}} & i \in A \\ \frac{\omega_{i}}{2} \leq \omega_{i} \leq \overline{\omega_{i}}, \quad \underline{\pi_{i}} \leq \pi_{i} \leq \overline{\pi_{i}} & = v \neq \mathbb{R} \\ \end{aligned}$$

MINLP formulation

$$\min_{\substack{\omega, \pi, q, z, \mathbf{v}, b \\ \text{s.t.}}} (1 - \lambda) \sum_{i \in A} (q_i - 1)^2 + \lambda \sum_{i \in A} b_i$$
s.t.
$$z_{ij} \left(||\mathbf{v}_{ij}||^2 \left(||\mathbf{x}_{ij}^0||^2 - d^2 \right) - (\mathbf{x}_{ij}^0 \cdot \mathbf{v}_{ij})^2 \right) \ge 0 \qquad i, j \in A : i < j$$

$$(-\mathbf{x}_{ij}^0 \cdot \mathbf{v}_{ij})(z_{ij} - 1) \ge 0 \qquad i, j \in A : i < j$$

$$\mathbf{v}_{ij} = \begin{pmatrix} \omega_i - \omega_j \\ \pi_i - \pi_j \end{pmatrix} \qquad i, j \in A : i < j$$

$$\omega_i^2 + \pi_i^2 = (q_i v_i)^2 \qquad i \in A$$

minimizing speed and angle deviations $0 \le \lambda \le 1$ b_i s.t., $\forall i \in A$: $-\overline{b} \le -b_i \le \sin(\theta_i) \le b_i$ (minimize b_i to minimize angle

deviations)

Sonia Cafieri (ENAC)

Formulation based on the penalty function g_β

Penalize the logical constraints in the objective:

 $\sum_{i,j \in A: i < j} g_{\beta}(t_{ij}^m, f_{ij}^m)$

(keeping the other constraints)

- (nonconvex) NLP
- potential *local infeasibility*: we implement a simple multistart heuristic

∃ → ∢ ∃

$$\begin{split} \min_{q,\omega,\pi,t^m,j^m,\mathbf{v}} \sum_{1 \le i < j \le n} g_{\beta}(t^m_{ij}, f^m_{ij}) \\ \text{s.t.} \\ f^m_{ij} \|\mathbf{v}_{ij}\|^2 &= \|\mathbf{v}_{ij}\|^2 \left(\|\mathbf{x}^0_{ij}\|^2 - d^2\right) - (\mathbf{x}^0_{ij} \cdot \mathbf{v}_{ij})^2 \qquad i, j \in A : i < j \\ t^m_{ij} \|\mathbf{v}_{ij}\|^2 &= -\mathbf{x}^0_{ij} \cdot \mathbf{v}_{ij} \qquad i, j \in A : i < j \\ \mathbf{v}_{ij} &= \begin{pmatrix} \omega_i - \omega_j \\ \pi_i - \pi_j \end{pmatrix} \qquad i, j \in A : i < j \\ \omega_i^2 + \pi_i^2 &= (q_i v_i)^2 \qquad i \in A \\ \frac{q_i}{2} \le q_i \le \overline{q_i} \qquad i \in A \\ \frac{\omega_i}{2} \le \omega_i \le \overline{\omega_i} \qquad i \in A \\ \pi_i \le \pi_i \le \overline{\pi_i} \qquad i \in A \end{split}$$

AMPL model implementation, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

- n=10, 20, 30 aircraft
- *d*= 5 NM

イロト イポト イヨト イヨト

Sonia Cafieri (ENAC)

AMPL model implementation, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

Random Circle Problem (RCP) [Rey & Hijazi, 2017]

NLP penalty: on all the 35 instances

- solutions satisfying the separation constraints (zero-value penalty function)
- only 2 starting points needed for the multistart heuristic (and only for 2 instances)

- n=10, 20, 30 aircraft
- d= 5 NM

AMPL model implementation, NLP solver: IPOPT 3.12 2.66 GHz, 32 GB RAM

Random Circle Problem (RCP) [Rey & Hijazi, 2017]

NLP penalty: on all the 35 instances

- solutions satisfying the separation constraints (zero-value penalty function)
- only 2 starting points needed for the multistart heuristic (and only for 2 instances)
- CPU times: $\mu = 3.68$ seconds for n = 30

3-phase algorithm

Initialize: $q^c := 1$, ω^c , π^c such that $\theta = 0$, upper_bound := + ∞

- (1) NLP penalty:
 - solve by local optimization
 - if (zero penalty): feasible (conflict-free) solution $q^c, \omega^c, \pi^c \Rightarrow b^c, z^c$
 - compute $q_{dev} := \sum_{i \in A} (1 q_i^c)^2$ if $q_{dev} \le tol$ then Stop

Э

3-phase algorithm

Initialize: $q^c := 1$, ω^c , π^c such that $\theta = 0$, upper_bound := + ∞

- (1) NLP penalty:
 - solve by local optimization
 - if (zero penalty): feasible (conflict-free) solution $q^c, \omega^c, \pi^c \Rightarrow b^c, z^c$
 - compute $q_{dev} := \sum_{i \in A} (1 q_i^c)^2$ if $q_{dev} \le tol$ then Stop
- (2) *MINLP*_{fix} with fixed $z = z^c$:
 - solve by continuous global optimization starting from (q^c, ω^c, π^c, b^c, z^c) with λ = 0 (minimizing speed deviation) using upper_bound=q_{dev} as cutoff to get new (q^c, ω^c, π^c, b^c, z^c)
 - compute $q_{dev} := \sum_{i \in A} (1 q_i^c)^2$ if $q_{dev} \le tol$ then Stop

イロト 不得 とくき とくき とうき

3-phase algorithm

Initialize: $q^c := 1$, ω^c , π^c such that $\theta = 0$, upper_bound := + ∞

- (1) NLP penalty:
 - solve by local optimization
 - if (zero penalty): feasible (conflict-free) solution $q^c, \omega^c, \pi^c \Rightarrow b^c, z^c$
 - compute $q_{dev} := \sum_{i \in A} (1 q_i^c)^2$ if $q_{dev} \le tol$ then Stop
- (2) *MINLP*_{fix} with fixed $z = z^c$:
 - solve by continuous global optimization starting from (q^c, ω^c, π^c, b^c, z^c) with λ = 0 (minimizing speed deviation) using upper_bound=q_{dev} as cutoff to get new (q^c, ω^c, π^c, b^c, z^c)
 - compute $q_{dev} := \sum_{i \in A} (1 q_i^c)^2$ if $q_{dev} \le tol$ then Stop

(3) MINLP: (free z)

• solve by mixed-integer global optimization starting from the last computed solution

with $\lambda = 0$ (minimizing speed deviation)

イロト 不得 とくき とくき とうき

Results: 3-phase algorithm

AMPL model implementation MINLP solver: COUENNE 0.5, NLP solver: IPOPT 3.12

$tol = 10^{-7}$

MINLP alone reaches tlim=600 sec. on 60% instances with n = 30

				2nd phase: MINLP _{fix}		3rd phase: MINLP		Total
Name	п	n_c	n _{hth}	time (s)	speed dev.	time (s)	speed dev.	time (s)
RCP_30_1	30	35	1	34.93	1.4e-06	7.900	4.22e-17	45.94
RCP_30_2	30	38	1	59.69	6.5e-15	-	_	60.76
RCP_30_3	30	46	1	2.920	1.7e-16	-	_	3.816
RCP_30_4	30	39	1	62.98	2.6e-16	-	-	65.60
RCP_30_5	30	36	2	43.98	2.2e-06	tlim	2.24e-06	tlim
RCP_30_6	30	32	2	43.99	1.5e-16	-	_	46.20
RCP_30_7	30	18	1	105.2	1.2e-16	-	_	106.8
RCP_30_8	30	40	1	2.700	1.3e-17	-	-	4.124
RCP_30_9	30	41	2	51.23	3.3e-06	20.38	1.89e-17	76.56
RCP_30_10	30	46	1	67.59	7.3e-07	-	_	73.46
RCP_30_11	30	34	2	51.79	4.4e-16	-	_	52.79
RCP_30_12	30	36	1	86.90	4.8e-15	-	_	88.45
RCP_30_13	30	30	1	4.092	3.6e-16	-	-	6.632
RCP_30_14	30	39	2	3.752	8.8e-18	-	_	23.81 🖉
RCP_30_15	30	30	1	79.32	9.9e-16			84.05

Sonia Cafieri (ENAC)

Continuous penalty-based formulation of logical constraints

2 An application from discrete geometry

3 An application from Air Traffic Management

Conclusions and perspectives

イロト イポト イヨト イヨト

Sonia Cafieri (ENAC)

Conclusions and perspectives

Summary of contributions

- For nonlinear problems whose discrete nature arise from logical constraints: a **continuous-optimization alternative** to compute **good-quality upper bounds**
- Usefulness to efficiently compute global solutions demonstrated on two applications from different domains

Perspectives

Promising to address **other problems** involving logical constraints that would incur too numerous extra binary variables

S. Cafieri, A. R. Conn, and M. Mongeau.

The continuous quadrant penalty formulation of logical constraints. *Open Journal on Mathematical Optimization*, 2023.

S. Cafieri, A. R. Conn, and M. Mongeau.

Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations.

European Journal of Operational Research, 2023.

S. Cafieri, P. Hansen, and F. Messine.

Global exact optimization for covering a rectangle with 6 circles.

Journal of Global Optimization, 2022.